首页> 外文期刊>Journal of ambient intelligence and humanized computing >Marketing segmentation using the particle swarm optimization algorithm: a case study
【24h】

Marketing segmentation using the particle swarm optimization algorithm: a case study

机译:使用粒子群优化算法的市场细分:一个案例研究

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, most companies use marketing campaigns to recruit new customers or retain old customers. Customer segmentation is an important technique for a marketing campaign to target the right customers. Most previous clustering algorithms have drawbacks, such as being stuck at local minima. To overcome such drawbacks this study attempts to develop a consumer segmentation model using a swarm intelligence based algorithm, called Particle Swarm Optimization (PSO). The swarm intelligent algorithm has the advantage of using fewer parameters to reach a global optimal solution. In general, the value of customer segmentation is judged by the customer's lifetime value. Based on many previous researches, the RFM (Recency, Frequency, and Monetary) model is the most well-known model used to compute customer lifetime value. This study calculates the RFM model from a data set into value-based information. Based on this value-based information the PSO algorithm is able to cluster consumers to find customers likely to be the most profitable and valuable. To demonstrate the effectiveness of PSO, we present an empirical case study involving a retail automobile marketing campaign. We compare the performance of the PSO customer segmentation algorithm against that of other segmentation algorithms (K-mean and self-organizing map (SOM)) and hybrid algorithms. The study finds the hybrid S-KMeans -PSO (SOM, K-Means and PSO) algorithms can reach the best performance. Finally, this study proposes effective marketing strategies for two segmented profitable and valuable customers.
机译:传统上,大多数公司使用市场营销活动来招募新客户或留住老客户。客户细分是营销活动针对合适客户的一项重要技术。以前的大多数聚类算法都有缺点,例如卡在局部最小值上。为了克服这些缺点,本研究尝试使用称为粒子群优化(PSO)的基于群体智能的算法来开发消费者细分模型。群智能算法的优点是使用更少的参数来获得全局最优解。通常,客户细分的价值由客户的生命周期价值来判断。基于许多先前的研究,RFM(新近度,频率和货币)模型是用于计算客户生命周期价值的最著名模型。这项研究从数据集到基于价值的信息中计算RFM模型。基于此基于价值的信息,PSO算法能够将消费者聚类,以找到可能是最赚钱和最有价值的顾客。为了证明PSO的有效性,我们提出了涉及零售汽车营销活动的经验案例研究。我们将PSO客户细分算法与其他细分算法(K均值和自组织图(SOM))和混合算法的性能进行了比较。研究发现,混合S-KMeans -PSO(SOM,K-Means和PSO)算法可以达到最佳性能。最后,本研究为两个细分的获利和有价值的客户提出了有效的营销策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号