首页> 外文期刊>Journal of ambient intelligence and humanized computing >An outsourcing service selection method using ANN and SFLA algorithms for cement equipment manufacturing enterprises in cloud manufacturing
【24h】

An outsourcing service selection method using ANN and SFLA algorithms for cement equipment manufacturing enterprises in cloud manufacturing

机译:基于ANN和SFLA算法的云制造水泥设备制造企业外包服务选择方法。

获取原文
获取原文并翻译 | 示例

摘要

In cloud manufacturing (CMfg) environments, an increasing number of manufacturing enterprises outsource manufacturing activities to subcontractors that are more professional to focus on the development of their core business. Volume, diversity, and variety are the typical characteristics of outsourcing services for cement equipment manufacturing enterprises (CEMEs). To address the new problem of service discovery and combinatorial optimization of outsourcing resources (COOR), a novel heuristic approach is investigated in this paper. First, a clustering and searching model of a web outsourcing service based on Ontology Web Language for Services (OWL-S) and an artificial neural network (ANN) is established. Then, an improved shuffled frog leaping algorithm (SFLA) is developed to solve the COOR problem. Finally, an investigation and comparative experiments based on a group of cement equipment manufacturing companies is presented. The experimental results show that the proposed method is preferable and is more efficient for solving large-scale problems in a CMfg environment.
机译:在云制造(CMfg)环境中,越来越多的制造企业将制造活动外包给更专业的转包商,以专注于其核心业务的发展。数量,多样性和多样性是水泥设备制造企业(CEME)外包服务的典型特征。为了解决服务发现和外包资源组合优化(COOR)的新问题,本文研究了一种新颖的启发式方法。首先,建立了基于本体Web服务语言(OWL-S)和人工神经网络(ANN)的Web外包服务的聚类和搜索模型。然后,开发了一种改进的改组蛙跳算法(SFLA)来解决COOR问题。最后,提出了基于一组水泥设备制造公司的调查和比较实验。实验结果表明,所提出的方法在解决CMfg环境中的大规模问题方面是优选的,并且效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号