首页> 外文期刊>Journal of algorithms & computational technology >Optimization design based on hierarchic genetic algorithm and particles swarm algorithm
【24h】

Optimization design based on hierarchic genetic algorithm and particles swarm algorithm

机译:基于层次遗传算法和粒子群算法的优化设计

获取原文
获取原文并翻译 | 示例

摘要

For a lot of data, it is time-consuming and unpractical to get the best combination by manual tests. The genetic algorithm can make up for this shortcoming through the optimization of parameters. In this paper, the advantages of traditional similarity algorithm is studied, the time model and the trust model for further filtering are introduced, and the parameters with the combination of hierarchical genetic algorithm and particle swarm algorithm are optimized. In the collaborative filtering algorithm, genetic algorithm is improved with hierarchical algorithm, and the user model and the algorithm process are optimized using the fitness function of selection, crossover, and variation, along with the optimization of recommendation result set. In the algorithm, the global optimal parameters can be calculated with the optimization of the obtained initial data, and the accuracy of the similarity calculation can also be improved. This study does the recommendation and comparison experiment in the MovieLens Dataset, and the results show that, on the basis of obtaining the nearest neighbor user group, the mixing use of the hierarchical genetic algorithm and the particle swarm algorithm can make more improvement in the recommendation quality than that of the traditional similarity algorithm.
机译:对于大量数据,通过手动测试获得最佳组合既费时又不切实际。遗传算法可以通过参数优化来弥补这一缺点。本文研究了传统相似算法的优点,介绍了时间模型和信任模型进行进一步过滤,并结合层次遗传算法和粒子群算法对参数进行了优化。在协同过滤算法中,对遗传算法进行了分层算法的改进,并利用选择,交叉和变异的适应度函数以及推荐结果集的优化对用户模型和算法过程进行了优化。该算法可以通过对获得的初始数据进行优化来计算全局最优参数,并且可以提高相似度计算的准确性。这项研究在MovieLens数据集中进行了推荐和比较实验,结果表明,在获得最近邻用户组的基础上,分层遗传算法和粒子群算法的混合使用可以对推荐进行更多的改进质量要优于传统的相似度算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号