首页> 外文期刊>Journal of Algebraic Combinatorics >Geometric combinatorial algebras: cyclohedron and simplex
【24h】

Geometric combinatorial algebras: cyclohedron and simplex

机译:几何组合代数:单面体和单面体

获取原文
获取原文并翻译 | 示例

摘要

In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto–Reutenauer algebra of permutations and the Loday–Ronco algebra of binary trees. Connecting algebra maps arise from a new generalization of the Tonks projection from the permutohedron to the associahedron, which we discover via the viewpoint of the graph associahedra of Carr and Devadoss. At the same time, that viewpoint allows exciting geometrical insights into the multiplicative structure of the algebras involved. Extending the Tonks projection also reveals a new graded algebra structure on the simplices. Finally this latter is extended to a new graded Hopf algebra with basis all the faces of the simplices.
机译:在本文中,我们报告了我们对由单面体的组合几何结构支持的代数结构的研究结果。我们新的分级代数结构位于两个著名的Hopf代数之间:排列的Malvenuto-Reutenauer代数和二叉树的Loday-Ronco代数。连接的代数图是从对四面体到准六面体的Tonks投影的新概括而产生的,这是我们从Carr和Devadoss图associahedra的角度发现的。同时,该观点允许对涉及的代数的乘法结构具有令人兴奋的几何见解。扩展Tonks投影还可以显示出单纯形上新的渐变代数结构。最后,将后者扩展到新的渐变Hopf代数,并基于这些单纯形的所有面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号