首页> 外文期刊>Journal of Algebraic Combinatorics >A simple bijection between standard 3×n tableaux and irreducible webs for $mathfrak{sl}_{3}$
【24h】

A simple bijection between standard 3×n tableaux and irreducible webs for $mathfrak{sl}_{3}$

机译:对于$ mathfrak {sl} _ {3} $,标准3×n tableaux和不可约网之间的简单双射

获取原文
获取原文并翻译 | 示例

摘要

Combinatorial spiders are a model for the invariant space of the tensor product of representations. The basic objects, webs, are certain directed planar graphs with boundary; algebraic operations on representations correspond to graph-theoretic operations on webs. Kuperberg developed spiders for rank 2 Lie algebras and $mathfrak {sl}_{2}$ . Building on a result of Kuperberg, Khovanov–Kuperberg found a recursive algorithm giving a bijection between standard Young tableaux of shape 3×n and irreducible webs for $mathfrak{sl}_{3}$ whose boundary vertices are all sources.
机译:组合蜘蛛是表示张量积不变空间的模型。基本对象(腹板)是带有边界的某些有向平面图。表示形式上的代数运算对应于Web上的图论运算。库珀伯格为2级李代数和$ mathfrak {sl} _ {2} $开发了蜘蛛。 Khovanov–Kuperberg在Kuperberg的结果的基础上,找到了一种递归算法,该算法给出了形状为3×n的标准Young表格和不可逆网之间的双射,其中$ mathfrak {sl} _ {3} $的边界顶点都是源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号