首页> 外文期刊>Journal of Aircraft >Roll Control of Low-Aspect-Ratio Wings Using Articulated Winglet Control Surfaces
【24h】

Roll Control of Low-Aspect-Ratio Wings Using Articulated Winglet Control Surfaces

机译:使用铰接式翼梢小翼控制面的低纵横比护翼侧倾控制

获取原文
获取原文并翻译 | 示例
           

摘要

The use of tip mounted winglets with independently variable cant angles was investigated as a means of roll control on wings with an aspect ratio of one. Wind-tunnel testing was performed in which a six-axis force balance was used to measure the total aerodynamic load on wings with winglet control surfaces. Stereoscopic digital particle image velocimetry of the near-wake plane was used to show how the topology of the tip vortices changed with winglet deflection. Shifts in the location of the right tip vortex core are considered to be responsible for roll moment generation because they indicate changes in the symmetry of suction-side flow structures. All winglet deflections were observed to shift the right tip vortex core inboard, and thereby shorten the effective span of the wing. The effect of a winglet deflection may be approximated as a change in the wing aspect ratio and a lateral shift in the wing aerodynamic center. Prandtl's lifting line theory provides a closed-form estimate for the reduction in lift caused by a winglet deflection. A geometrical argument was made to account for the induced roll moment. The right tip vortex core also shifts vertically, following the deflected wing tip. Vertical shifts in the right tip vortex result in an angle between the wing span line and a line connecting the two tip vortices. A positive angle is defined as the right tip vortex higher over the wing than the left, and it is accompanied by a positive roll moment. While in sideslip, the wing with no winglet deflection experiences a considerable roll moment as a result of a vertical and lateral shift in the two tip vortices. The articulated winglets are observed to partially mitigate these effects when the upstream winglet is actuated, and thus show promise as a direct means of disturbance rejection.
机译:研究了使用具有独立可变倾斜角的叶尖安装式小翼作为纵横比为1的机翼侧倾控制方法。进行风洞测试,其中使用六轴力平衡来测量带有小翼控制面的机翼上的总空气动力学负荷。近尾平面的立体数字粒子图像测速技术用于显示尖端涡旋的拓扑如何随着小翼挠度的变化而变化。右尖端涡流芯位置的变化被认为是侧倾力矩的产生原因,因为它们表明吸力侧流动结构的对称性发生了变化。观察到所有的小翼偏转都会使右尖旋涡芯向内侧移动,从而缩短了机翼的有效跨度。小翼偏转的影响可以近似为机翼纵横比的变化和机翼空气动力中心的横向偏移。 Prandtl的举升线理论提供了一种封闭形式的估算,用于估算由于小翼变形而引起的升力降低。进行了几何论证以说明引起的侧倾力矩。右旋翼涡旋核心也随偏航的翼梢垂直移动。右尖端涡旋的垂直移动导致机翼跨度线和连接两个尖端涡旋的线之间的夹角。正角定义为机翼上的右尖端涡流高于左翼,并伴有正侧倾力矩。在侧滑时,由于两个叶尖涡流在垂直方向和横向方向上发生偏移,因此没有小翼挠曲的机翼会经历相当大的侧倾力矩。当上游小翼被致动时,观察到铰接式小翼部分地减轻了这些影响,因此显示出作为抑制干扰的直接手段的希望。

著录项

  • 来源
    《Journal of Aircraft》 |2019年第2期|419-430|共12页
  • 作者单位

    Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA;

    Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA|Univ Florida, Elect & Comp Engn Dept, Gainesville, FL 32611 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号