首页> 外文期刊>Journal of Aircraft >Simulating the Aerodynamics of the NASA John H. Glenn Icing Research Tunnel
【24h】

Simulating the Aerodynamics of the NASA John H. Glenn Icing Research Tunnel

机译:模拟NASA的空气动力学John H. Glenn结冰研究隧道

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this study is to develop and employ a numerical simulation strategy for predicting the airflow from the spray bars to the test section of the NASA John H. Glenn Icing Research Tunnel (IRT). In particular, predictions of the mean velocity and turbulence distributions were desired throughout this flow domain to later investigate droplet dispersion. Computational airflow results were produced using the WIND code (developed by NPARC) with a second-order accurate finite difference scheme and the shear stress transport k-Ω urbulence model. The inflow conditions for the flow domain were derived from the IRT measurements just upstream of the spray bars, which reflected the contributions to turbulence from the upstream heat exchanger wake. It was found that inclusion of the spray bar wakes and the air jets (of the spray nozzles) were required to describe the wind-tunnel turbulence distribution. Because it was impractical to simultaneously resolve the overall flow domain (60 ft long), along with the detailed flow around the 10 spray bars and the flow within a hundred air jets (issuing from 1/8-in. nozzle diameters), these features were simulated individually and then algebraically combined together to give an approximate solution. The results of the spray bar wake combined with the heat exchanger flow yielded good prediction of test section mean velocity and turbulence for the jets-off condition. Inclusion of all of the individual air jets also yielded reasonable resulting predictions of mean velocity and turbulence in the test section.
机译:这项研究的目的是开发并采用一种数值模拟策略来预测从喷杆到NASA John H. Glenn Icing研究隧道(IRT)的测试段的气流。特别地,期望在整个流动域中对平均速度和湍流分布进行预测,以随后研究液滴的分散。使用WIND代码(由NPARC开发)使用二阶精确有限差分方案和切应力传递k-Ω湍流模型来产生计算气流结果。流动区域的流入条件是从喷淋棒上游的IRT测量得出的,这反映了上游热交换器尾流对湍流的贡献。已发现需要包括喷杆尾流和(喷嘴的)喷气来描述风洞湍流分布。因为同时解决整个流域(60英尺长),围绕10个喷杆的详细流量以及一百个空气喷嘴内的流量(由1/8英寸喷嘴直径产生)是不切实际的,所以这些功能分别进行模拟,然后将其代数结合在一起以给出一个近似解。喷杆尾流与换热器流量相结合的结果可以很好地预测喷射条件下试验段的平均速度和湍流。包括所有单独的空气射流,还可以得出合理的预测结果,即测试部分的平均速度和湍流。

著录项

  • 来源
    《Journal of Aircraft》 |2005年第3期|p.671-684|共14页
  • 作者单位

    University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号