...
首页> 外文期刊>Japanese Journal of Applied Physics. Part 1, Regular Papers & Short Notes >Hot-Carrier Degradation Rate of High-Voltage Lateral Diffused Metal-Oxide-Semiconductor Field-Effect Transistors under Maximum Substrate Current Stress Conditions
【24h】

Hot-Carrier Degradation Rate of High-Voltage Lateral Diffused Metal-Oxide-Semiconductor Field-Effect Transistors under Maximum Substrate Current Stress Conditions

机译:最大衬底电流应力条件下高压横向扩散金属氧化物半导体场效应晶体管的热载流子降解率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, hot-carrier stresses in high-voltage (HV) lateral diffused metal-oxide-semiconductor field-effect transistors (LDMOSFETs) are applied under maximum substrate current (I_(Sub,max)) conditions with different V_(DS) and V_(GS). The power index of the hot-carrier degradation rates is not always 0.5 upon stressing under different I_(Sub,max) conditions, and the HV LDMOSFETs do not exhibit the hot-carrier degradation behavior observed in low-voltage (LV) metal-oxide-semiconductor field-effect transistors (MOSFETs). In order to explain why the degradation rates under I_(Sub,max) conditions differ with different biases, two-dimensional simulators are used to elucidate the degradation mechanism in HV LDMOSFETs. It is found that under different I_(Sub,max) conditions, the highest impact ionization is located at different positions in the drift region of the device. Due to the different gate-control abilities of these regions, the current densities affected by the hot-carrier-induced interface-trapped charges are different. Thus the hot-carrier degradation rates also differ. Furthermore, due to the different depths of the impact ionization region, the amounts of initial hot-carrier-induced interface-trapped charges differ and thus the power-law pre-coefficient A also differs.
机译:在这项研究中,在最大衬底电流(I_(Sub,max))和不同V_(DS)条件下,在高压(HV)横向扩散的金属氧化物半导体场效应晶体管(LDMOSFET)中施加热载流子应力和V_(GS)。在不同的I_(Sub,max)条件下施加应力时,热载流子降解率的功率指数并不总是为0.5,并且HV LDMOSFET并未表现出在低压(LV)金属氧化物中观察到的热载流子降解行为-半导体场效应晶体管(MOSFET)。为了解释为什么I_(Sub,max)条件下的劣化率会因不同的偏置而不同,使用二维仿真器阐明了HV LDMOSFET的劣化机理。发现在不同的I_(Sub,max)条件下,最高的碰撞电离位于设备的漂移区域中的不同位置。由于这些区域的栅极控制能力不同,受热载流子诱导的界面俘获电荷影响的电流密度也不同。因此,热载流子降解率也不同。此外,由于碰撞电离区域的深度不同,初始热载流子引起的界面俘获电荷的量也不同,因此幂律预系数A也不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号