...
首页> 外文期刊>Japanese journal of applied physics >Electric Properties and Interface Charge Trap Density of Ferroelectric Gate Thin Film Transistor Using (Bi,La)_4Ti_3O_(12)/Pb(Zr,Ti)O_3 Stacked Gate Insulator
【24h】

Electric Properties and Interface Charge Trap Density of Ferroelectric Gate Thin Film Transistor Using (Bi,La)_4Ti_3O_(12)/Pb(Zr,Ti)O_3 Stacked Gate Insulator

机译:(Bi,La)_4Ti_3O_(12)/ Pb(Zr,Ti)O_3叠栅绝缘子的铁电栅薄膜晶体管的电学性质和界面电荷陷阱密度

获取原文
获取原文并翻译 | 示例
           

摘要

We successfully fabricated ferroelectric gate thin film transistors (FGTs) using solution-processed (Bi,La)_4Ti_3O_(12)/Pb(Zr,Ti)O_3 (PZT) stacked films and an indium-tin oxide (ITO) film as ferroelectric gate insulators and an oxide channel, respectively. The typical n-type channel transistors were obtained with the counterclockwise hysteresis loop due to the ferroelectric property of the BLT/PZT stacked gate insulators. These FGTs exhibited good device performance characteristics, such as a high ON/OFF ratio of 10~6, a large memory window of 1.7-3.1 V, and a large ON current of 0.5-2.5 mA. In order to investigate interface charge trapping for these devices, we applied the conductance method to MFS capacitors, i.e., Pt/ITO/BLT/PZT/Pt capacitors. As a result, the interface charge trap density (D_(it)) between the ITO and BLT/PZT stacked films was estimated to be in the range of 10~(-11)-10~(-12) eV~(-1) cm~(-2). The small D_(it) value suggested that good interfaces were achieved.
机译:我们成功地使用溶液处理的(Bi,La)_4Ti_3O_(12)/ Pb(Zr,Ti)O_3(PZT)叠层膜和铟锡氧化物(ITO)膜作为铁电栅来成功制造铁电栅薄膜晶体管(FGT)绝缘体和氧化物通道。由于BLT / PZT堆叠栅绝缘子的铁电特性,典型的n型沟道晶体管具有逆时针磁滞回线。这些FGT具有良好的器件性能特征,例如10/6的高ON / OFF比,1.7-3.1 V的大存储窗口以及0.5-2.5 mA的大ON电流。为了研究这些设备的界面电荷陷阱,我们将电导方法应用于MFS电容器,即Pt / ITO / BLT / PZT / Pt电容器。结果,ITO和BLT / PZT堆叠膜之间的界面电荷陷阱密度(D_(it))估计为10〜(-11)-10〜(-12)eV〜(-1) )cm〜(-2)。小的D_(it)值表明可以实现良好的接口。

著录项

  • 来源
    《Japanese journal of applied physics》 |2012年第9issue2期|p.09LA09.1-09LA09.5|共5页
  • 作者单位

    School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan,Faculty of Physics, College of Science, Vietnam National University, Hanoi, Vietnam;

    ERATO, Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency, Nomi, Ishikawa 923-1211, Japan,Faculty of Engineering Physics and Nanotechnology, College of Engineering and Technology, Vietnam National University, Hanoi, Vietnam;

    ERATO, Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency, Nomi, Ishikawa 923-1211, Japan;

    ERATO, Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency, Nomi, Ishikawa 923-1211, Japan,Green Devices Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan;

    ERATO, Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency, Nomi, Ishikawa 923-1211, Japan,Green Devices Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan;

    School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan,ERATO, Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency, Nomi, Ishikawa 923-1211, Japan,Green Devices Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号