...
首页> 外文期刊>Journal of Chemical Physics >Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces
【24h】

Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

机译:带电表面上溶菌酶定向的平行回火蒙特卡洛模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with “side-on” and “back-on” orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both “end-on” and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications. © 2010 American Institute of Physics Article Outline INTRODUCTION METHODS Models and force field Simulation details RESULTS AND DISCUSSION Performance comparison of PTMC to serial MC simulations Lysozyme orientation on a negatively charged surface Lysozyme orientation on a positively charged surface CONCLUSIONS
机译:在这项工作中,并行回火蒙特卡洛(PTMC)算法被应用于在一次模拟中准确有效地识别吸附在表面上的蛋白质的全局最小能量方向。当应用PTMC方法模拟带电表面上的溶菌酶方向时,发现溶菌酶很容易吸附在带“侧向”和“背面”方向的带负电荷的表面上。当由主要的静电相互作用驱动时,溶菌酶倾向于以侧向取向吸附在带负电荷的表面上,为此溶菌酶的活性位点面向侧面。侧面定向与实验结果非常吻合,其中溶菌酶的吸附方向由静电相互作用确定。随着范德华相互作用的贡献逐渐占主导地位,后向取向成为首选。对于此方向,溶菌酶的活性位点朝外,这与实验结果一致,在实验结果中,吸附的溶菌酶的方向由静电相互作用和范德华相互作用共同确定。还发现,尽管溶菌酶具有净正电荷,但由于其在溶菌酶表面上的分布不均匀以及从溶液中离子的屏蔽作用,仍可以以“末端”和“背面”两种方向吸附在带正电荷的表面上。 PTMC模拟方法提供了一种方法来确定生物传感器和生物材料应用中蛋白质在表面上的首选方向。 ©2010美国物理研究所文章概要简介方法模型和力场仿真详细信息结果与讨论PTMC与串行MC模拟的性能比较带有负电荷的表面上的溶菌酶方向带正电荷的表面上的溶菌酶方向结论

著录项

  • 来源
    《Journal of Chemical Physics》 |2010年第6期|p.1-8|共8页
  • 作者

    Yun Xie; Jian Zhou; Shaoyi Jiang;

  • 作者单位

    Guangdong Provincial Key Lab for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China;

    Guangdong Provincial Key Lab for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China;

    Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biochemistry; biomedical materials; biosensors; electrostatics; molecular biophysics; molecular orientation; Monte Carlo methods; proteins;

    机译:生物化学;生物医学材料;生物传感器;静电学;分子生物物理学;分子取向;蒙特卡洛法;蛋白质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号