首页> 外文期刊>ITS Journal >Probe vehicle lane identification for queue length estimation at intersections
【24h】

Probe vehicle lane identification for queue length estimation at intersections

机译:探测车辆行车道识别,以估计交叉口的队列长度

获取原文
获取原文并翻译 | 示例

摘要

Vehicles instrumented with Global Positioning Systems, also known as GPS probe vehicles, have become increasingly popular for collecting traffic flow data. Previous studies have explored the probe vehicle data for estimating speeds and travel time; however, there is very limited research on predicting queue dynamics from such data. In this research, a methodology was developed for identifying the lane position of the GPS-instrumented vehicles when they are standing in the queue at signalized intersections with multiple lanes, particularly in the case of unequal queue. Various supervised and unsupervised clustering methods were tested on data generated from a microsimulation model. Among the tested methods, the Optimal Bayes Rule that utilizes probability density functions estimated using bivariate statistical mixture models was found to be effective in identifying the lanes. The methodology for lane identification was tested for queue length estimation. This research confirms that the lane identification is an important step required prior to the queue length estimation. The accuracies of the models for lane identification and queue length estimation were evaluated at varying levels of demand and probe vehicle market penetrations. In general, as the market penetration increases, the accuracy improves as expected. The result shows that 40% market penetration rate is adequate to reach about 90% accuracy.
机译:装备有全球定位系统的车辆(也称为GPS探测车)在收集交通流量数据方面变得越来越受欢迎。先前的研究已经探索了探测车辆的数据以估计速度和行驶时间。但是,关于从此类数据预测队列动态的研究非常有限。在这项研究中,开发了一种方法来识别装有GPS的车辆,当它们在多条车道的信号交叉口处排队时,特别是在队列不相等的情况下,识别车道位置。在从微观模拟模型生成的数据上测试了各种监督和非监督聚类方法。在测试的方法中,发现利用利用双变量统计混合模型估算的概率密度函数的最优贝叶斯规则可以有效地识别车道。测试了车道识别方法,以进行队列长度估计。这项研究证实,车道识别是队列长度估计之前所需的重要步骤。在不同需求水平和探查车辆市场渗透率的基础上,评估了车道识别和队列长度估计模型的准确性。通常,随着市场渗透率的提高,准确性会按预期提高。结果表明,40%的市场渗透率足以达到约90%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号