首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery
【24h】

A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery

机译:用卷积神经网络方法对无人机多光谱图像中的柑橘树进行计数和地理定位

获取原文
获取原文并翻译 | 示例

摘要

Visual inspection has been a common practice to determine the number of plants in orchards, which is a labor-intensive and time-consuming task. Deep learning algorithms have demonstrated great potential for counting plants on unmanned aerial vehicle (UAV)-borne sensor imagery. This paper presents a convolutional neural network (CNN) approach to address the challenge of estimating the number of citrus trees in highly dense orchards from UAV multispectral images. The method estimates a dense map with the confidence that a plant occurs in each pixel. A flight was conducted over an orchard of Valencia-orange trees planted in linear fashion, using a multispectral camera with four bands in green, red, red-edge and near-infrared. The approach was assessed considering the individual bands and their combinations. A total of 37,353 trees were adopted in point feature to evaluate the method. A variation of a (0.5; 1.0 and 1.5) was used to generate different ground truth confidence maps. Different stages (T) were also used to refine the confidence map predicted. To evaluate the robustness of our method, we compared it with two state-of-the-art object detection CNN methods (Faster R-CNN and RetinaNet). The results show better performance with the combination of green, red and near-infrared bands, achieving a Mean Absolute Error (MAE), Mean Square Error (MSE), R-2 and Normalized Root-MeanSquared Error (NRMSE) of 2.28, 9.82, 0.96 and 0.05, respectively. This band combination, when adopting sigma = 1 and a stage (T = 8), resulted in an R-2, MAE, Precision, Recall and F1 of 0.97, 2.05, 0.95, 0.96 and 0.95, respectively. Our method outperforms significantly object detection methods for counting and geolocation. It was concluded that our CNN approach developed to estimate the number and geolocation of citrus trees in highdensity orchards is satisfactory and is an effective strategy to replace the traditional visual inspection method to determine the number of plants in orchards trees.
机译:目测检查是确定果园中植物数量的一种常见做法,这是一项劳动强度大且耗时的任务。深度学习算法已显示出在无人飞行器(UAV)传感器图像上对植物进行计数的巨大潜力。本文提出了卷积神经网络(CNN)方法,以解决从无人机多光谱图像估计高密度果园中柑橘树数量的挑战。该方法可以在每个像素中都有植物的情况下估计密集图。使用带有绿色,红色,红色边缘和近红外四个波段的多光谱相机,对以线性方式种植的巴伦西亚橙树的果园进行了飞行。评估方法时考虑了各个频段及其组合。对该点进行了37,353棵树的点状特征评价。使用变量(0.5; 1.0和1.5)生成不同的地面真实置信度图。还使用了不同阶段(T)来完善预测的置信度图。为了评估我们方法的鲁棒性,我们将其与两种最新的对象检测CNN方法(Faster R-CNN和RetinaNet)进行了比较。结果显示绿色,红色和近红外波段的组合具有更好的性能,实现的平均绝对误差(MAE),均方误差(MSE),R-2和归一化均方根误差(NRMSE)为2.28、9.82 ,分别为0.96和0.05。当采用sigma = 1和一个级(T = 8)时,此频段组合导致R-2,MAE,Precision,Recall和F1分别为0.97、2.05、0.95、0.96和0.95。我们的方法在计数和地理定位方面明显优于对象检测方法。结论是,我们开发的CNN方法可以估算高密度果园中柑桔树的数量和地理位置,这是令人满意的,并且是取代传统的目测方法确定果园中树木数量的有效策略。

著录项

  • 来源
  • 作者

  • 作者单位

    Univ Fed Mato Grosso do Sul Fac Engn Architecture & Urbanism & Geog Campo Grande MS Brazil;

    Univ Fed Mato Grosso do Sul Fac Comp Sci Campo Grande MS Brazil;

    Univ Western Sao Paulo Fac Engn & Architecture Sao Paulo Brazil;

    Soo Paulo State Univ Dept Cartog Sci BR-19060900 Presidente Prudente SP Brazil;

    Univ Western Sao Paulo Fac Comp Sci Sao Paulo Brazil;

    Univ Western Sao Paulo Fac Agron Sao Paulo Brazil;

    Univ Waterloo Dept Geog & Environm Management Waterloo ON N2L 3G1 Canada|Univ Waterloo Dept Syst Design Engn Waterloo ON N2L 3G1 Canada;

    Univ Fed Mato Grosso do Sul Fac Engn Architecture & Urbanism & Geog Campo Grande MS Brazil|Univ Fed Mato Grosso do Sul Fac Comp Sci Campo Grande MS Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Multispectral image; UAV-borne sensor; Object detection; Citrus tree counting; Orchard;

    机译:深度学习;多光谱图像;无人机传感器对象检测;柑桔树计数;果园;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号