首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia
【24h】

Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

机译:使用多个数据流监控森林覆盖率损失,以玻利维亚的热带干旱森林为例

获取原文
获取原文并翻译 | 示例

摘要

Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events. (C) 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
机译:对于某些类型的环境,尤其是表现出强烈自然变化的环境,在发生森林干扰时自动进行检测可能极具挑战性。在这里,我们使用通用的结构性断裂检测框架(BFAST)通过组合多个数据流来改善对森林覆盖率损失的监测。森林变化监测结合Landsat数据和MODIS或降雨数据进行,以进一步改善建模和监测。我们测试了中分辨率成像光谱仪(MODIS)中归一化植被指数(NDVI)在空间聚集窗口大小不同以及降雨得出的指数作为外部回归因子的情况下的使用。该方法在玻利维亚低地的热带干旱森林地区进行了评估,已知该地区会发生森林覆盖率下降的情况,我们针对使用TimeSync环境手动解释的一组地面真相样本验证了结果。我们发现,添加外部回归变量可以利用人为诱发的变化和自然诱发的变化之间的空间范围差异,并且仅检测感兴趣的过程。在所有配置中,我们发现13 x 13 km的MODIS NDVI窗口是最成功的,总精度为87%。与单像素方法相比,该方法产生了更好的时间序列模型拟合,从而提高了整体精度(从82%到87%),并减少了遗漏和委托误差(从33%到24%和3%)分别设为0%)。所提出的方法似乎对于年际自然变异高的地区特别有用,例如经常经历异常干旱事件的森林。 (C)2015国际摄影测量与遥感学会(ISPRS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号