首页> 外文期刊>Internet of Things Journal, IEEE >Unsupervised WiFi-Enabled IoT Device-User Association for Personalized Location-Based Service
【24h】

Unsupervised WiFi-Enabled IoT Device-User Association for Personalized Location-Based Service

机译:不受监管的启用WiFi的IoT设备-用户关联,用于基于位置的个性化服务

获取原文
获取原文并翻译 | 示例

摘要

A fundamental building block toward personalized location-based service and context-aware service in smart buildings is the knowledge about the identity and mobility of users in indoor environments. Conventional user identification systems require the deployment of dedicated infrastructure or the active user involvement. Motivated by the widespread usage of theWiFi-enabled mobile device (MD), e.g., people usually carry at least one MD in their daily lives, in this paper, we propose WinDUA, a WiFi-enabled nonintrusive device and user association scheme to infer user identity and mobility via a novel unsupervised association learning algorithm. First, we utilize our WiFi-based indoor positioning system to obtain the historical location data of each MD using only existing WiFi infrastructure in a nonintrusive manner. Then, we classify all the MDs into two categories: 1) static device (SD) and 2) mobile phone (MP), according to their location variations and overnight presences. Subsequently, we estimate the correct mapping between each SD and its user through hierarchical clustering and location similarity matching between its location and user's personal space. Finally, we make possible pairs of MP and SD according to their duration of coexistence as well as the historical location similarity to associate the owner of each MP. Real-world experiments are conducted in an office, verifying that WinDUA is able to associate the MD to the correct users in a nonintrusive and unsupervised manner.
机译:在智能建筑中,个性化基于位置的服务和上下文感知服务的基本构建块是有关室内环境中用户身份和移动性的知识。传统的用户识别系统需要部署专用的基础架构或积极的用户参与。基于具有WiFi功能的移动设备(MD)的广泛使用,例如人们通常在日常生活中至少携带一台MD,本文提出了WinDUA,这是一种具有WiFi功能的非侵入式设备和用户关联方案,可以推断用户通过一种新颖的无监督关联学习算法来实现身份和移动性。首先,我们利用基于WiFi的室内定位系统以非侵入方式仅使用现有WiFi基础设施来获取每个MD的历史位置数据。然后,我们将所有MD分为两类:1)静态设备(SD)和2)移动电话(MP),具体取决于它们的位置变化和过夜状态。随后,我们通过分层聚类和位置与用户个人空间之间的位置相似性匹配,估计每个SD与用户之间的正确映射。最后,我们根据MP和SD的共存持续时间以及历史位置相似性来配对MP和SD。真实世界的实验是在办公室进行的,目的是验证WinDUA能够以非侵入性和无监督的方式将MD关联到正确的用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号