首页> 外文期刊>IEEE internet computing >Shades of Knowledge-Infused Learning for Enhancing Deep Learning
【24h】

Shades of Knowledge-Infused Learning for Enhancing Deep Learning

机译:广泛的知识融合学习,以提高深度学习

获取原文
获取原文并翻译 | 示例

摘要

Deep Learning has already proven to be the primary technique to address a number of problems. It holds further promise in solving more challenging problems if we can overcome obstacles, such as the lack of quality training data and poor interpretability. The exploitation of domain knowledge and application semantics can enhance existing deep learning methods by infusing relevant conceptual information into a statistical, data-driven computational approach. This will require resolving the impedance mismatch due to different representational forms and abstractions between symbolic and statistical AI techniques. In this article, we describe a continuum that comprises of three stages for infusion of knowledge into the machine/deep learning architectures. As this continuum progresses across these three stages, it starts with shallow infusion in the form of embeddings, and attention and knowledge-based constraints improve with a semideep infusion. Toward the end reflecting deeper incorporation of knowledge, we articulate the value of incorporating knowledge at different levels of abstractions in the latent layers of neural networks. While shallow infusion is well studied and semideep infusion is in progress, we consider Deep Infusion of Knowledge as a new paradigm that will significantly advance the capabilities and promises of deep learning.
机译:深入学习已经证明是解决一些问题的主要技术。如果我们能够克服障碍,例如缺乏质量训练数据和可辨认性,因此在解决更具挑战性问题方面的承诺进一步承诺。域知识和应用语义的开发可以通过将相关的概念信息注入统计,数据驱动的计算方法来增强现有的深度学习方法。这将需要解决由于不同的代表性形式和符号和统计AI技术之间的抽象而解决阻抗不匹配。在本文中,我们描述了一个连续体,其中包括将知识输注到机器/深度学习架构中的三个阶段。随着这种连续体的进展,它以嵌入形式的形式突出的浅输注,并用半输注来改善关注和基于知识的约束。朝向最终反映更深入的知识,我们阐明了在神经网络的潜在层中将知识纳入不同水平的知识的价值。虽然浅剂进行了很好的研究,并且半灌注正在进行中,我们认为深入灌注知识作为一种新的范式,这将大大推进深入学习的能力和承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号