首页> 外文期刊>International journal of web information systems >A method for detecting local events using the spatiotemporal locality of microblog posts
【24h】

A method for detecting local events using the spatiotemporal locality of microblog posts

机译:一种利用微博帖子的时空局部性检测局部事件的方法

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to propose a method to detect local events in real time using Twitter, an online microblogging platform. The authors especially aim at detecting local events regardless of the type and scale. Design/methodology/approach - The method is based on the observation that relevant tweets (Twitter posts) are simultaneously posted from the place where a local event is happening. Specifically, the method first extracts the place where and the time when multiple tweets are posted using a hierarchical clustering technique. It next detects the co-occurrences of key terms in each spatiotemporal cluster to find local events. To determine key terms, it computes the term frequency-inverse document frequency (TFIDF) scores based on the spatiotemporal locality of tweets. Findings - From the experimental results using geotagged tweet data between 9 a.m. and 3 p.m. on October 9, 2011, the method significantly improved the precision of between 50 and 100 per cent at the same recall compared to a baseline method. Originality/value - In contrast to existing work, the method described in this paper can detect various types of small-scale local events as well as large-scale ones by incorporating the spatiotemporal feature of tweet postings and the text relevance of tweets. The findings will be useful to researchers who are interested in real-time event detection using microblogs.
机译:目的-本文的目的是提出一种使用在线微博平台Twitter实时检测本地事件的方法。作者特别针对检测本地事件,而与类型和规模无关。设计/方法/方法-该方法基于以下观察结果:相关推文(Twitter帖子)是从发生本地事件的地方同时发布的。具体地,该方法首先使用分层聚类技术提取张贴多条推文的地点和时间。接下来,它检测每个时空群集中关键术语的共现,以查找本地事件。要确定关键术语,它会根据推文的时空局部性来计算词频-反文档频率(TFIDF)分数。发现-从上午9点至下午3点之间使用带有地理标签的推文数据的实验结果。 2011年10月9日,与基准方法相比,该方法在相同召回率下的精度显着提高了50%至100%。原创性/价值-与现有工作相比,本文所述的方法可以通过整合推文发布的时空特征和推文的文本相关性来检测各种类型的小规模本地事件以及大规模事件。该发现对于对使用微博进行实时事件检测感兴趣的研究人员将非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号