首页> 外文期刊>International journal of uncertainty, fuzziness and knowledge-based systems >Kernel-Target Alignment Based Fuzzy Lagrangian Twin Bounded Support Vector Machine
【24h】

Kernel-Target Alignment Based Fuzzy Lagrangian Twin Bounded Support Vector Machine

机译:基于内核 - 目标对齐的模糊拉格朗日双界界支持向量机

获取原文
获取原文并翻译 | 示例

摘要

To improve the generalization performance, we develop a new technique for handling the impacts of outliers using Lagrangian twin bounded SVM (TBSVM) with kernel fuzzy membership values, which is termed kernel-target alignment-based fuzzy Lagrangian twin bounded support vector machine (KTA-FLTBSVM). Here, the objective functions are having L2-norm vectors of the slack variable that leads to the optimization problem more convex and yields a unique global solution. Also, the fuzzy membership values are employing the importance of data samples assigned to each sample to minimize the impacts of outlier and noise. Further, we have suggested a linearly convergent iterative approach to obtain the solution of the problem unlike in place to solve the quadratic programming problem in Twin SVM (TSVM) and TBSVM. To investigate the effectiveness of the proposed KTA-FLTBSVM, the comprehensive experiments demonstrate with other reported models on artificial datasets along with benchmark real-life publicly available datasets. Our KTA-FLTBSVM outperforms to other models in terms of better classification accuracy.
机译:为了提高泛化性能,我们开发了一种新的技术,用于使用Lagrangian双界SVM(TBSVM)处理异常值与内核模糊会员值的影响,这些技术被称为基于内核 - 目标对齐的模糊拉格朗日双界界支持向量机(KTA- Fltbsvm)。这里,客观函数具有SLACK变量的L2-NARM向量,其导致优化问题更多凸起并产生独特的全局解决方案。此外,模糊会员值采用分配给每个样本的数据样本的重要性,以最小化异常值和噪声的影响。此外,我们建议了一种线性收敛的迭代方法,以获得问题的解决方案,而不是解决双SVM(TSVM)和TBSVM中的二次编程问题。为了调查拟议的KTA-FLTBSVM的有效性,综合实验与人工数据集的其他报告模型一起展示以及基准现实生活公共数据集。我们的KTA-FLTBSVM在更好的分类准确性方面优于其他模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号