首页> 外文期刊>International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems >STOCHASTIC SCENARIO-BASED TIME-STAGE OPTIMIZATION MODEL FOR THE LEAST EXPECTED TIME SHORTEST PATH PROBLEM
【24h】

STOCHASTIC SCENARIO-BASED TIME-STAGE OPTIMIZATION MODEL FOR THE LEAST EXPECTED TIME SHORTEST PATH PROBLEM

机译:基于随机场景的最短时间最短路径问题的时间优化模型

获取原文
获取原文并翻译 | 示例

摘要

Focusing on finding a pre-specified basis path in a network, this research formulates a two-stage stochastic optimization model for the least expected time shortest path problem, in which random scenario-based time-invariant link travel times are utilized to capture the uncertainty of the real-world traffic network. In this model, the first stage aims to find a basis path for the trip over all the scenarios, and the second stage intends to generate the remainder path adaptively when the realizations of random link travel times are updated after a pre-specified time threshold. The GAMS optimization software is introduced to find the optimal solution of the proposed model. The numerical experiments demonstrate the performance of the proposed approaches.
机译:着重于寻找网络中的预定基础路径,该研究针对最短期望时间最短路径问题制定了一个两阶段随机优化模型,其中利用基于随机场景的时不变链路旅行时间来捕获不确定性现实交通网络在该模型中,第一阶段旨在找到所有场景下的行程的基本路径,第二阶段旨在在预先指定的时间阈值之后更新随机链接行驶时间的实现时,自适应地生成剩余路径。引入GAMS优化软件以找到所提出模型的最佳解决方案。数值实验证明了所提出方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号