首页> 外文期刊>Computers & operations research >A shortest-path-based approach for the stochastic knapsack problem with non-decreasing expected overfilling costs
【24h】

A shortest-path-based approach for the stochastic knapsack problem with non-decreasing expected overfilling costs

机译:一种基于最短路径的随机背包问题,且预期的过剩成本不会减少

获取原文
获取原文并翻译 | 示例

摘要

The knapsack problem (KP) is concerned with the selection of a subset of multiple items with known positive values and weights such that the total value of selected items is maximized and their total weight does not exceed capacity. Item values, item weights, and capacity are known in the deterministic case. We consider the stochastic KP (SKP) with stochastic item weights. For this variant of the SKP we combine the chance constrained KP (CCKP) and the SKP with simple recourse (SRKP). The chance constraint allows for a violation of capacity, but the probability of a violation beyond an imposed limit is constrained. The violation of the capacity constraint is also included in the objective function in terms of a penalty function as in the SRKP. Penalty is an increasing function of the expected number of units of violation with proportionality as a special case. We formulate the SKP as a network problem and demonstrate that it can be solved by a label-setting dynamic programming approach for the shortest path problem with resource constraints (SPPRC). We develop a dominance criterion for an elimination of states in the dynamic programming approach using only the deterministic value of items along with mean and variance of the stochastic weight of items corresponding to the associated paths in the underlying network. It is shown that a lower bound for the impact of potential extensions of paths is available as an additional means to limit the number of states provided the penalty cost of expected overtime is convex. Our findings are documented in terms of a computational study. (C) 2018 Elsevier Ltd. All rights reserved.
机译:背包问题(KP)涉及选择具有已知正值和权重的多个项目的子集,以使所选项目的总价值最大化,并且总重量不超过容量。在确定性情况下,项目值,项目重量和容量是已知的。我们考虑具有随机项目权重的随机KP(SKP)。对于这种SKP变体,我们将机会受限的KP(CCKP)和具有简单追索权(SRKP)的SKP结合在一起。机会限制允许容量的违反,但超出施加限制的违反概率受到限制。像SRKP中那样,惩罚函数也违反了容量约束。罚金是特殊情况下预期的违规单位数量与比例成比例增加的函数。我们将SKP公式化为网络问题,并证明可以通过标签设置动态规划方法解决带有资源约束的最短路径问题(SPPRC)。我们仅使用项目的确定性值以及与基础网络中关联路径相对应的项目随机权重的均值和方差,制定了动态编程方法中消除状态的主导准则。结果表明,如果预期加班的惩罚成本是凸的,则可以使用路径的潜在扩展的影响的下限作为限制状态数的附加方法。我们的发现以计算研究的形式记录在案。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号