首页> 外文期刊>International journal of speech technology >GMM based language identification system using robust features
【24h】

GMM based language identification system using robust features

机译:使用强大功能的基于GMM的语言识别系统

获取原文
获取原文并翻译 | 示例

摘要

In this work, we have proposed new feature vectors for spoken language identification (LID) system. The Mel frequency cepstral coefficients (MFCC) and formant frequencies derived using short-time window speech signal. Formant frequencies are extracted from linear prediction (LP) analysis of speech signal. Using these two kind of features of speech signal, new feature vectors are derived using cluster based computation. A GMM based classifier has been designed using these new feature vectors. The language specific apriori knowledge is applied on the recognition output. The experiments are carried out on OGI database and LID recognition performance is improved.
机译:在这项工作中,我们提出了用于语音识别(LID)系统的新特征向量。使用短时窗口语音信号导出的梅尔频率倒谱系数(MFCC)和共振峰频率。从语音信号的线性预测(LP)分析中提取共振峰频率。使用这两种语音信号特征,可以使用基于聚类的计算来推导新的特征向量。已经使用这些新特征向量设计了基于GMM的分类器。特定于语言的先验知识应用于识别输出。在OGI数据库上进行了实验,提高了LID识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号