首页> 外文期刊>International journal of software science and computational intelligence >Improving Accuracy of Event-Related Potentials Classification by Channel Selection Using Independent Component Analysis and Least Square Methods
【24h】

Improving Accuracy of Event-Related Potentials Classification by Channel Selection Using Independent Component Analysis and Least Square Methods

机译:通过使用独立成分分析和最小二乘方法进行通道选择来提高事件相关电位分类的准确性

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method for achieving a high performance of N200 and P300 classification by applying independent component analysis to select the channels, which deliver brain signals with large N200 and P300 potentials and small artifacts. In this study, the authors find out the relationship between the highest accuracy and the weights of the independent components and use this relationship to predict the optimal channels of each individual subject. They compare five channel selection methods: the ICA-based method and the curve-fitting-based method proposed in this paper, the amplitude-based method, the experiential optimal 8 channel combination and all 30 channel combination methods. The comparative studies show that the ICA-based method achieves an average accuracy of 99.3% across four subjects, which is superior to the other four methods.
机译:本文提出了一种通过应用独立的分量分析来选择通道的方法,该方法可以实现N200和P300的高性能分类,该通道可以提供具有N200和P300较大电势且伪影较小的大脑信号。在这项研究中,作者发现了最高准确度与独立组件权重之间的关系,并使用这种关系来预测每个个体主题的最佳渠道。他们比较了五种通道选择方法:本文提出的基于ICA的方法和基于曲线拟合的方法,基于幅度的方法,经验最优的8通道组合以及所有30通道组合方法。对比研究表明,基于ICA的方法在四个对象上的平均准确率达到99.3%,优于其他四个方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号