首页> 外文期刊>International journal of software science and computational intelligence >Improved SfM-Based Indoor Localization with Occlusion Removal
【24h】

Improved SfM-Based Indoor Localization with Occlusion Removal

机译:改进的基于SfM的室内定位与遮挡去除

获取原文
获取原文并翻译 | 示例

摘要

This article describes a novel 3D image-based indoor localization system integrated with an improved SfM (structure from motion) approach and an obstacle removal component. In contrast with existing state-of-the-art localization techniques focusing on static outdoor or indoor environments, the adverse effects, generated by moving obstacles in busy indoor spaces, are considered in this work. In particular, the problem of occlusion removal is converted into a separation problem of moving foreground and static background. A low-rank and sparse matrix decomposition approach is used to solve this problem efficiently. Moreover, a SfM with RT (re-triangulation) is adopted in order to handle the drifting problem of incremental SfM method in indoor scene reconstruction. To evaluate the performance of the system, three data sets and the corresponding query sets are established to simulate different states of the indoor environment. Quantitative experimental results demonstrate that both query registration rate and localization accuracy increase significantly after integrating the authors' improvements.
机译:本文介绍了一种新颖的基于3D图像的室内定位系统,该系统集成了改进的SfM(运动结构)方法和障碍物清除组件。与专注于静态室外或室内环境的现有最新定位技术相反,在这项工作中考虑了移动障碍物在繁忙的室内空间中产生的不利影响。特别地,遮挡去除的问题被转换成移动前景和静态背景的分离问题。低秩稀疏矩阵分解方法用于有效解决此问题。此外,为了处理室内场景重建中增量SfM方法的漂移问题,采用了带有RT(重新三角测量)的SfM。为了评估系统的性能,建立了三个数据集和相应的查询集以模拟室内环境的不同状态。定量实验结果表明,在整合了作者的改进后,查询注册率和本地化准确性均显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号