首页> 外文期刊>International journal of software science and computational intelligence >Jamming-Resilient Wideband Cognitive Radios with Multi- Agent Reinforcement Learning
【24h】

Jamming-Resilient Wideband Cognitive Radios with Multi- Agent Reinforcement Learning

机译:具有多智能体强化学习功能的抗干扰宽带认知无线电

获取原文
获取原文并翻译 | 示例

摘要

This article presents a design of a wideband autonomous cognitive radio (WACR) for anti-jamming and interference-avoidance. The proposed system model allows multiple WACRs to simultaneously operate over the same spectrum range producing a multi-agent environment. The objective of each radio is to predict and evade a dynamic jammer signal as well as avoiding transmissions of other WACRs. The proposed cognitive framework is made of two operations: sensing and transmission. Each operation is helped by its own learning algorithm based on Q-learning, but both will be experiencing the same RF environment. The simulation results indicate that the proposed cognitive anti-jamming technique has low computational complexity and significantly outperforms non-cognitive sub-band selection policy while being sufficiently robust against the impact of sensing errors.
机译:本文介绍了一种用于抗干扰和避免干扰的宽带自主认知无线电(WACR)的设计。提出的系统模型允许多个WACR在相同频谱范围内同时运行,从而产生多代理环境。每个无线电的目的是预测和逃避动态干扰信号,并避免其他WACR的传输。所提出的认知框架由两个操作组成:感测和传输。每种操作都有其自己的基于Q学习的学习算法,但两者都会遇到相同的RF环境。仿真结果表明,所提出的认知抗干扰技术具有较低的计算复杂度,并且明显优于非认知子带选择策略,同时对感知错误的影响具有足够的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号