首页> 外文期刊>IEEE transactions on network and service management >Energy-Efficient Resource Allocation in Cognitive Radio Networks Under Cooperative Multi-Agent Model-Free Reinforcement Learning Schemes
【24h】

Energy-Efficient Resource Allocation in Cognitive Radio Networks Under Cooperative Multi-Agent Model-Free Reinforcement Learning Schemes

机译:在合作多剂型无代理模型加强学习计划下认知无线电网络中的节能资源分配

获取原文
获取原文并翻译 | 示例

摘要

The most prominent challenge to the wireless community is to meet the demand for radio resources. Cognitive Radio (CR) is envisioned as a potential solution that utilizes its cognition ability intended to enhance the proper utilization of available radio resources and improves energy efficiency. However, due to the co-existence of Primary Base Stations (PU-BSs) and Cognitive Base Stations (CR-BSs) in CR networks, the problem of aggregated interference occurs which poses a critical challenge for resource allocation in CR networks. Moreover, in practical scenarios, it is difficult to form the correct network model due to complex network dynamics beforehand. Therefore, this work presents Multi-Agent Model-Free Reinforcement Learning schemes namely Q-Learning (Q-L) and State-Action-Reward- (next) State- (next) Action (SARSA) for resource allocation which mitigates interference and eliminate the need of network model. The proposed schemes are implemented in a decentralized cooperative manner with CRs act as multi-agent, forms a stochastic dynamic team to obtain optimal energy-efficient resource allocation strategy. Numerical results reveal that: 1) proposed cooperative scheme 1 (Cooperative Q-L scheme) expedites the convergence; 2) proposed cooperative scheme 2 (Cooperative SARSA scheme) achieves significant improvement in network capacity. Both the proposed cooperative schemes demonstrate its effectiveness by providing significant improvement in energy efficiency and maintain users' QoS.
机译:对无线社区最突出的挑战是满足无线电资源的需求。认知无线电(CR)被设想为利用其认知能力的潜在解决方案,旨在增强可用无线电资源的适当利用并提高能量效率。然而,由于CR网络中的主要基站(PU-BSS)和认知基站(CR-BS)的共存,发生了聚合干扰的问题,这对CR网络中的资源分配构成了一个关键挑战。此外,在实际情况下,由于预先复杂的网络动态,难以形成正确的网络模型。因此,这项工作介绍了多代理无模型加强学习方案,即Q-Learnal(QL)和状态 - action-right-(下一个)状态 - (下一个)动作(SARSA),用于减轻干扰和消除需要的资源分配网络模型。拟议的计划以分散的合作方式实施,CRS充当多助手,形成一个随机动态团队,以获得最佳的节能资源分配策略。数值结果表明:1)拟议的合作方案1(合作Q-L计划)加快趋同; 2)拟议的合作计划2(合作SARSA计划)实现了网络能力的显着提高。拟议的合作计划都通过提供显着提高能源效率和维护用户QoS来展示其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号