首页> 外文期刊>International journal of remote sensing >Hyperspectral parameter estimation of elliptically contoured t mixture models using expectation-maximisation
【24h】

Hyperspectral parameter estimation of elliptically contoured t mixture models using expectation-maximisation

机译:使用期望最大化的椭圆轮廓t混合模型的高光谱参数估计

获取原文
获取原文并翻译 | 示例

摘要

The remote sensing community has been interested in parameter estimation for many years, and with the maturation of hyperspectral imaging technology, it is natural to turn our attention to estimating parameters of models for hyperspectral data. Existing statistical models employ one or many normal distributions to account for spectral variability. However, recent work demonstrates the deviation from normality for many data, and the lack of robustness of normal models. As such, we develop adaptive probability density models for hyperspectral images based on a mixture of t distributions. Model parameters are estimated using the Expectation-Maximization (EM) algorithm, both in a traditional and stochastic formulation, with t distributions to account for the long, heavy tails exhibited by remotely sensed hyperspectral data. What makes this paper unique is the fact that unlike earlier work that uses EM in the context of normal or other distributions, no manual manipulation is required during model generation, and all parameters (including the important degrees of freedom) are estimated simultaneously from the data. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data demonstrate our automated approach, and clustering is performed based on posterior probabilities. Results are statistically evaluated for goodness-of-fit. While multivariate distributions are used to accommodate the vector nature of hyperspectral image pixels, the techniques developed here apply equally well to univariate distributions for standard image processing with scalar pixel values.
机译:多年来,遥感界一直对参数估计感兴趣,并且随着高光谱成像技术的成熟,自然而然地将我们的注意力转向估计高光谱数据模型的参数。现有的统计模型采用一种或多种正态分布来说明光谱的可变性。但是,最近的工作表明许多数据都偏离了正常性,并且缺乏正常模型的鲁棒性。因此,我们基于t分布的混合,为高光谱图像开发了自适应概率密度模型。在传统和随机公式中,均使用“期望最大化”(EM)算法估计模型参数,并使用t分布说明遥感高光谱数据所显示的长而重的尾巴。使得本文与众不同的是,与早期在正态分布或其他分布情况下使用EM的工作不同,在模型生成过程中不需要人工操作,并且所有参数(包括重要的自由度)都可以从数据中同时估算出来。机载可见红外成像光谱仪(AVIRIS)数据证明了我们的自动化方法,并且基于后验概率进行聚类。对结果进行统计评估以评估拟合优度。虽然使用多元分布来适应高光谱图像像素的矢量性质,但此处开发的技术同样适用于具有标量像素值的标准图像处理的单变量分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号