首页> 外文期刊>International Journal of Reliability, Quality and Safety Engineering >A Temporal Neuro-Fuzzy System for Estimating Remaining Useful Life in Preheater Cement Cyclones
【24h】

A Temporal Neuro-Fuzzy System for Estimating Remaining Useful Life in Preheater Cement Cyclones

机译:估算预热器水泥旋流器剩余使用寿命的时间神经模糊系统

获取原文
获取原文并翻译 | 示例

摘要

Fault prognosis in industrial plants is a complex problem, and time is an important factor for the resolution of this problem. The main indicator for the task of fault prognosis is the estimate of remaining useful life (RUL), which essentially depends on the predicted time to failure. This paper introduces a temporal neuro-fuzzy system (TNFS) for performing the fault prognosis task and exactly estimating the RUL of preheater cyclones in a cement plant. The main component of the TNFS is a set of temporal fuzzy rules that have been chosen for their ability to explain the behavior of the entire system, the components' degradation, and the RUL estimation. The benefit of introducing time in the structure of fuzzy rules is that a local memory of the TNFS is created to capture the dynamics of the prognostic task. More precisely, the paper emphasizes improving the performance of TNFSs for prediction. The RUL estimation process is broken down into four generic processes: building a predictive model, selecting the most critical parameters, training the TNFS, and predicting RUL through the generated temporal fuzzy rules. Finally, the performance of the proposed TNFS is evaluated using a real preheater cement cyclone dataset. The results show that our TNFS produces better results than classical neuro-fuzzy systems and neural networks.
机译:工业工厂的故障预后是一个复杂的问题,而时间是解决此问题的重要因素。故障预后任务的主要指标是剩余使用寿命(RUL)的估计,该寿命基本上取决于预测的故障时间。本文介绍了一种临时神经模糊系统(TNFS),用于执行故障预测任务并准确估算水泥厂中的预热器旋风分离器的RUL。 TNFS的主要组件是一组时间模糊规则,这些规则已被选择,原因是它们能够解释整个系统的行为,组件的退化和RUL估计。在模糊规则的结构中引入时间的好处在于,可以创建TNFS的本地内存来捕获预后任务的动态。更准确地说,本文强调要提高TNFS的性能以进行预测。 RUL估计过程分为四个通用过程:建立预测模型,选择最关键的参数,训练TNFS和通过生成的时间模糊规则预测RUL。最后,使用实际的预热器水泥旋风数据集评估提出的TNFS的性能。结果表明,与经典的神经模糊系统和神经网络相比,我们的TNFS产生了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号