首页> 外文期刊>International Journal of Productivity Management and Assessment Technologies >Analyzing Enterprise Attribute-Dependent KPls/KGls by Bayesian Network-Leveraging LDA
【24h】

Analyzing Enterprise Attribute-Dependent KPls/KGls by Bayesian Network-Leveraging LDA

机译:通过贝叶斯网络 - 利用LDA分析企业属性依赖的KPLS / KGLS

获取原文
获取原文并翻译 | 示例

摘要

In product development, key performance indicators (KPIs) and key goal indicators (KGIs) have complex influences on each other. To understand the structure among them, Bayesian network analysis is one of effective methods. However, relationships among KPIs/KGIs often differ in attributes of enterprises, such as business type and annual sales. In this study, the authors incorporate topics obtained via latent Dirichlet allocation (LDA) into Bayesian network as nodes. With this "Bayesian network with topic nodes," how KPIs affect the results of KGIs can be probabilistically inferenced and graphically observed according to attributes of enterprises. Furthermore, by configuring cultural or national differences as topic nodes, the proposed methods are expected to contribute overcoming barriers caused by these differences and accelerating improvement of product development in the global society.
机译:在产品开发中,关键绩效指标(KPI)和关键目标指标(KGIS)对彼此具有复杂的影响。 要了解它们中的结构,贝叶斯网络分析是一种有效方法之一。 然而,KPIS / KGIS之间的关系通常在企业的属性中不同,例如商业类型和年度销售。 在这项研究中,作者将通过潜在Dirichlet分配(LDA)的主题纳入贝叶斯网络作为节点。 通过这个“贝叶斯网络与主题节点”,KPI如何影响KGIS的结果可以根据企业的属性概率地推断和以图形方式观察。 此外,通过将文化或国家差异配置为主题节点,预计拟议的方法将有助于克服这些差异造成的障碍,并加快全球社会产品开发的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号