首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A preclassification method for handwritten Chinese character recognition via Fuzzy rules and senar neural net
【24h】

A preclassification method for handwritten Chinese character recognition via Fuzzy rules and senar neural net

机译:基于模糊规则和神经网络的手写汉字识别的预分类方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a method of character preclassification for handwritten Chinese char- acter recognition is proposed. Since the number of Chinese characters is very large (at least 540ls for daily use), we employ two stages to reduce the candidates of an input character. In stage I, we extract the first set of primitive features from handwritten Chi- nese characters and use fuzzy rules to create four preclassification groups. The purpose in stage I is to reduce the candidates roughly.
机译:本文提出了一种用于手写汉字识别的字符预分类方法。由于汉字的数量非常大(每天至少使用540升),因此我们采用两个阶段来减少输入字符的候选项。在第一阶段,我们从手写的中国字符中提取第一组原始特征,并使用模糊规则创建四个预分类组。第一阶段的目的是大幅度减少候选人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号