首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >CAFFNet: Channel Attention and Feature Fusion Network for Multi-target Traffic Sign Detection
【24h】

CAFFNet: Channel Attention and Feature Fusion Network for Multi-target Traffic Sign Detection

机译:CAFFNET:通道关注和功能融合网络,用于多目标流量标志检测

获取原文
获取原文并翻译 | 示例

摘要

The fact that the existing traffic sign images are easily affected by external factors, and the traffic signs are generally small targets on the images at different scales, has made it difficult in feature extraction when doing traffic sign detection. To achieve better detection results, a multi-target traffic sign detection method with channel attention and feature fusion network (CAFFNet in short) is proposed. This method effectively learns the correlation between feature channels through a lightweight channel attention network, realizes local cross-channel interaction without dimensionality reduction, and enhances the representation ability of the network. The feature pyramid network is used to achieve feature fusion and generate high-resolution multiscale semantic information. The dilated convolution is utilized to capture the multiscale context information to narrow the difference between features and improve the detection effect of the model. The experimental results show that the proposed method on the two datasets GTSDB and CTSD has achieved superior performance in the evaluation criteria compared with the existing detection algorithms.
机译:现有的交通标志图像容易受到外部因素影响的事实,并且交通标志通常在不同尺度上的图像上的小目标,在进行交通标志检测时使特征提取变得困难。为了实现更好的检测结果,提出了一种具有通道注意力和特征融合网络(简称CAFFNETFNED)的多目标交通标志检测方法。该方法通过轻量级信道注意网络有效地学习特征频道之间的相关性,实现了没有维度降低的局部交叉通道交互,并增强了网络的表示能力。特征金字塔网络用于实现特征融合并生成高分辨率多尺度语义信息。扩张的卷积用于捕获多尺度上下文信息以缩小特征之间的差异并提高模型的检测效果。实验结果表明,与现有检测算法相比,两个数据集GTSDB和CTSD上的提出方法在评价标准中取得了卓越的性能。

著录项

  • 来源
  • 作者单位

    Xinjiang Univ Sch Software Key Lab Software Engn Urumqi 830091 Peoples R China|Xinjiang Univ Sch Software Key Lab Signal Detect & Proc Xinjiang Uygur Auton Urumqi 830091 Peoples R China;

    Xinjiang Univ Sch Software Key Lab Signal Detect & Proc Xinjiang Uygur Auton Urumqi 830091 Peoples R China;

    Xinjiang Univ Sch Software Key Lab Signal Detect & Proc Xinjiang Uygur Auton Urumqi 830091 Peoples R China;

    Xinjiang Univ Sch Informat Sci & Engn Urumqi 830046 Peoples R China;

    Xinjiang Univ Sch Software Urumqi 83009 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Traffic sign detection; channel attention; feature fusion; dilated convolution;

    机译:交通标志检测;渠道注意;特征融合;扩张卷积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号