首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Research on Fast Recognition Method of Complex Sorting Images Based on Deep Learning
【24h】

Research on Fast Recognition Method of Complex Sorting Images Based on Deep Learning

机译:基于深度学习的复杂分类图像快速识别方法研究

获取原文
获取原文并翻译 | 示例

摘要

For the logistics sorting warehouse without much light is complex, and the difference between express packaging is not obvious, a fast recognition method of sorting images based on deep learning and dual tree complex wavelet transform was studied. Sorting images are not very clear due to factors such as the enclosed environment and the weak lighting conditions of the warehouse. First, the dual tree complex wavelet transform is used to preprocess the sorting image for noise reduction and other image preprocessing. Second, a convolutional neural network (CNN) was designed. On the basis of Alexnet neural network, parameters of convolutional layer, ReLU layer and pooling layer of CNN are redefined to accelerate the learning speed of neural network. Lastly, according to the new image classification task, the last three layers of the neural network, the full connection layer, the softmax layer and the classification output layer are defined to adapt to the new image recognition. The proposed fast sorting image recognition technology based on deep learning has higher training speed and recognition accuracy in the face of more complicated sorting image recognition, which can meet the experimental requirements. Rapid identification of sorting images is of great significance to improve the efficiency of logistics in unmanned warehouses.
机译:对于没有太多光线的物流分拣仓库是复杂的,并且在快递包装之间的差异不明显,研究了基于深度学习和双树复杂小波变换进行分类的快速识别方法。由于诸如封闭环境和仓库的弱光条件等因素,分拣图像不是很清楚。首先,双树复杂小波变换用于预处理用于降噪和其他图像预处理的分类图像。其次,设计了卷积神经网络(CNN)。基于AlexNet神经网络,重新定义卷积层,Relu层和CNN的汇集层的参数以加速神经网络的学习速度。最后,根据新的图像分类任务,定义了神经网络的最后三层,全连接层,软MAX层和分类输出层以适应新的图像识别。基于深度学习的提出的快速分拣图像识别技术在更加复杂的分类图像识别面上具有更高的训练速度和识别精度,这可以满足实验要求。分拣图像的快速识别是提高无人仓库中物流效率的重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号