首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Brain Tumor Segmentation Using 3D Generative Adversarial Networks
【24h】

Brain Tumor Segmentation Using 3D Generative Adversarial Networks

机译:脑肿瘤分割使用3D生成对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Brain tumors have high morbidity and may lead to highly lethal cancer. In clinics, accurate segmentation of tumors is the means for diagnosis and determination of subsequent treatment options. Due to the irregularity and blurring of tumor boundaries, accurately segmenting the tumor lesions has received extensive attention in medical image analysis. In view of this situation, this paper proposed a brain tumor segmentation method based on generative adversarial networks (GANs). The GAN architecture consists of a densely connected three-dimensional (3D) U-Net used for segmentation and a classification network for discrimination, both of which use 3D convolutions to fuse multi-dimensional context information. The densely connected 3D U-Net model introduces a dense connection to accelerate network convergence, extracting more detailed information. The adversarial training makes the distribution of segmentation results closer to that of labeled data, which enables the network to segment some unexpected small tumor subregions. Alternately, train two networks and finally achieve a highly accurate classification of each voxel. The experiments conducted on BraTS2017 brain tumor MRI dataset show that the proposed method has higher accuracy in brain tumor segmentation.
机译:脑肿瘤的发病率高,可能导致高度致命的癌症。在诊所,肿瘤的准确细分是诊断和测定后续治疗方案的手段。由于肿瘤界限的不规则性和模糊,准确地分割肿瘤病变在医学图像分析中受到广泛的关注。鉴于这种情况,本文提出了一种基于生成对抗性网络(GANS)的脑肿瘤分割方法。 GaN架构包括用于分割的密集连接的三维(3D)U-Net,以及用于判别的分类网络,其两者都使用3D卷积来融合多维上下文信息。密集连接的3D U-Net模型引入了密集的连接以加速网络收敛,提取更详细的信息。对抗性培训使分段的分布结果更接近标记数据,这使得网络能够分割一些意外的小肿瘤子区域。或者,火车两个网络,最后实现每个体素的高度准确分类。在Brats2017脑肿瘤MRI数据集上进行的实验表明,该方法在脑肿瘤细分方面具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号