首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Parameter Optimization of Impedance Gradient Change Medium Based on Reinforcement Learning
【24h】

Parameter Optimization of Impedance Gradient Change Medium Based on Reinforcement Learning

机译:基于钢筋学习的阻抗梯度变化介质参数优化

获取原文
获取原文并翻译 | 示例

摘要

Based on the relative researches, in order to solve the problem that the parameters of impedance gradient change medium are difficult to be optimized and generalized in different environments, an optimization method of the parameters of the impedance gradient change medium based on reinforcement learning was proposed. First, the propagation principle of sound wave in impedance gradient medium was analyzed. The sound field distribution in the medium was also studied, in order to master its acoustic characteristics. Second, the parameters of sound velocity and impedance distribution were optimized by DQN algorithm to reduce the sound reflection. Finally, the effectiveness of the proposed reinforcement learning model was verified by the traditional method. The experimental results show that the method presented in this paper was superior to the traditional method. The trained parameters are effective to reduce the acoustic reflection to a lower level.
机译:基于相对研究,为了解决阻抗梯度变化介质的参数难以在不同环境中优化和广义的问题,提出了一种基于增强学习的阻抗梯度变化介质的参数的优化方法。 首先,分析了阻抗梯度培养基中声波的传播原理。 还研究了培养基中的声场分布,以便掌握其声学特性。 其次,通过DQN算法优化了声速和阻抗分布的参数以减少声音反射。 最后,通过传统方法验证了所提出的增强学习模型的有效性。 实验结果表明,本文介绍的方法优于传统方法。 训练有素的参数有效地将声反射降低到较低级别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号