首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Feature Extraction of EEG Signals Based on Local Mean Decomposition and Fuzzy Entropy
【24h】

Feature Extraction of EEG Signals Based on Local Mean Decomposition and Fuzzy Entropy

机译:基于局部平均分解和模糊熵的EEG信号特征提取

获取原文
获取原文并翻译 | 示例

摘要

An improved feature extraction method is proposed aiming at the recognition of motor imagined electroencephalogram (EEG) signals. Using local mean decomposition, the algorithm decomposes the original signal into a series of product function (PF) components, and meaningless PF components are removed from EEG signals in the range of mu rhythm and beta rhythm. According to the principle of feature time selection, 4s to 6s motor imagery EEG signals are selected as classification data, and the sum of fuzzy entropies of second-and third-order PF components of C-3, C-4 lead signals is calculated, respectively. Mean value of fuzzy entropy MFE(C-3,C-4) is used as input element to construct EEG feature vector, and support vector machine (SVM) is used to classify and predict EEG signals for recognition. The test results show that this feature extraction method has higher classification accuracy than the empirical mode decomposition method and the total empirical mode decomposition method.
机译:提出了一种改进的特征提取方法,其旨在识别电动机图像脑电图(EEG)信号。使用局部均值分解,该算法将原始信号分解为一系列产品功能(PF)组件,并且从MU节奏和β节奏的范围内从EEG信号中移除无意义的PF分量。根据特征时间选择的原理,选择4S到6S电机图像EEG信号作为分类数据,并且计算了C-3的二阶PF组件的模糊熵和C-4引线信号的总和,分别。模糊熵MFE(C-3,C-4)的平均值用作构建EEG特征向量的输入元素,并且支持向量机(SVM)用于对识别进行分类和预测EEG信号。测试结果表明,该特征提取方法具有比经验模型分解方法更高的分类精度和总经验模式分解方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号