首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A General Nonstationary and Time-Varying Mixed Signal Blind Source Separation Method Based on Online Gaussian Process
【24h】

A General Nonstationary and Time-Varying Mixed Signal Blind Source Separation Method Based on Online Gaussian Process

机译:一种基于在线高斯过程的普通非间断和时变信号盲源分离方法

获取原文
获取原文并翻译 | 示例

摘要

Most nonstationary and time-varying mixed source separation algorithms are based on the model of instantaneous mixtures. However, the observation signal is a convolutional mixed source in reverberation environment, such as mobile voice received by indoor microphone arrays. In this paper, a time-varying convolution blind source separation (BSS) algorithm for nonstationary signals is proposed, which can separate both time-varying instantaneous mixtures and time-varying convolution mixtures. We employ the variational Bayesian (VB) inference method with Gaussian process (GP) prior for separating the nonstationary source frame by frame from the time-varying convolution signal, in which the prior information of the mixing matrix and the source signal are obtained by the Gaussian autoregressive method, and the posterior distributions of parameters (source signal and mixing matrix) are obtained by the VB learning. In the learning process, the learned parameters and hyperparameters are propagated to the next frame for VB inference as the prior which is combined with the likelihood function to get the posterior distribution. The experimental results show that the proposed algorithm is effective for separating time-varying mixed speech signals.
机译:大多数非间断和时变的混合源分离算法基于瞬时混合物的模型。然而,观察信号是混响环境中的卷积混合源,例如由室内麦克风阵列接收的移动语音。在本文中,提出了一种用于非间抗信号的时变卷积盲源分离(BSS)算法,其可以分离时变瞬时混合物和时变卷积混合物。我们在通过帧从时变卷积信号分离不间断的源帧之前,采用变形贝叶斯(VB)推断方法(GP),其中混合矩阵和源信号的先前信息由通过VB学习获得高斯自动增加方法和参数(源信号和混合矩阵)的后验分布。在学习过程中,学习的参数和超参数被传播到VB推断的下一个帧,因为之前与似然函数结合以获得后部分布。实验结果表明,该算法对于分离时变混音信号是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号