首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >An Image Segmentation Method Based on Two-Dimensional Entropy and Chaotic Lightning Attachment Procedure Optimization Algorithm
【24h】

An Image Segmentation Method Based on Two-Dimensional Entropy and Chaotic Lightning Attachment Procedure Optimization Algorithm

机译:一种基于二维熵和混沌闪电附件优化算法的图像分割方法

获取原文
获取原文并翻译 | 示例

摘要

Threshold segmentation has been widely used in recent years due to its simplicity and efficiency. The method of segmenting images by the two-dimensional maximum entropy is a species of the useful technique of threshold segmentation. However, the efficiency and stability of this technique are still not ideal and the traditional search algorithm cannot meet the needs of engineering problems. To mitigate the above problem, swarm intelligent optimization algorithms have been employed in this field for searching the optimal threshold vector. An effective technique of lightning attachment procedure optimization (LAPO) algorithm based on a two-dimensional maximum entropy criterion is offered in this paper, and besides, a chaotic strategy is embedded into LAPO to develop a new algorithm named CLAPO. In order to confirm the benefits of the method proposed in this paper, the other seven kinds of competitive algorithms, such as Ant-lion Optimizer (ALO) and Grasshopper Optimization Algorithm (GOA), are compared. Experiments are conducted on four different kinds of images and the simulation results are presented in several indexes (such as computational time, maximum fitness, average fitness, variance of fitness and other indexes) at different threshold levels for each test image. By scrutinizing the results of the experiment, the superiority of the introduced method is demonstrated, which can meet the needs of image segmentation excellently.
机译:由于其简单性和效率,近年来阈值分割已被广泛使用。通过二维最大熵分割图像的方法是阈值分割的有用技术的种类。然而,这种技术的效率和稳定性仍然不理想,传统的搜索算法无法满足工程问题的需求。为了减轻上述问题,在该字段中已经采用了Swarm智能优化算法,用于搜索最佳阈值向量。本文提供了一种基于二维最大熵标准的雷电连接过程优化(LAPO)算法的有效技术,并且除此之外,混沌策略嵌入到LAPO中以开发一个名为Clapo的新算法。为了确认本文提出的方法的好处,比较了其他七种竞争性算法,例如蚂蚁优化器(ALO)和蚱蜢优化算法(GOA)。在四种不同的图像上进行实验,并且模拟结果以每个测试图像的不同阈值水平以几种指标(例如计算时间,最大健康,平均要素,适应性和其他指标的变化等)呈现。通过仔细检查实验结果,对引入的方法的优势进行了说明,这可以极大地满足图像分割的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号