首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Research on Sensitivity of Speckle Center Coordinate Values by Contour and Background Noise and Elimination Method
【24h】

Research on Sensitivity of Speckle Center Coordinate Values by Contour and Background Noise and Elimination Method

机译:轮廓和背景噪声和消除方法对斑点中心坐标值的灵敏度研究

获取原文
获取原文并翻译 | 示例

摘要

The accuracy of measuring the target object displacement is greatly influenced by the offset of central coordinate value in a laser speckle contour (CCVLSC) due to the defects obtained in background or on measuring surface, as a measuring combination of both monocular vision and laser speckle is used. In this paper, the theoretical principle of displacement measurement is first presented by a combination of monocular vision and laser speckle. Then, a model between object displacement and CCVLSC (particularly, Y coordinate value) is derived. Finally, a denoising algorithm with competitive protection of contour effective points is proposed, on the basis of effects of noises coming from background and contour edge on CCVLSC. The algorithm includes ellipse fitting to laser speckle contour, calculating offsets between all contour points and the fitted eclipse, eliminating noise points with higher deviation (generally about 5% of all contour points) by using competitive strategy, ellipse refitting, and recalculating and re-eliminating until the deviation is below a specified threshold. It is shown that the algorithm can not only eliminate the fixed noise points in each round but also protect the number of effective points to the greatest extent. Finally, the feasibility of the algorithm is verified by two ways. One is an ideal data validation. It proves that the algorithm can guarantee the convergence towards the ideal center coordinate value. Another is an experimental verification. An experimental system is built up based on the relationship between object displacement and Y coordinate value of CCVLSC for obtaining relevant dada. It is shown by the comparison between predictions and experimental data that the algorithm has a better robustness and a higher accuracy of distance measurement than other typical algorithms.
机译:测量目标物体位移的准确性由于在背景或测量表面上获得的缺陷而导致激光散斑轮廓(CCVLSC)中的中央坐标值的偏移大大影响,作为单眼视觉和激光斑点的测量组合用过的。在本文中,首先通过单眼视觉和激光斑点的组合呈现位移测量的理论原理。然后,导出对象位移和CCVLSC(特别是Y坐标值)之间的模型。最后,基于CCVLSC上的背景和轮廓边缘的噪声的影响,提出了一种具有轮廓有效点的竞争保护的去噪算法。该算法包括椭圆拟合激光散斑轮廓,通过使用竞争策略,椭圆形式,重新计算和重新计算和重新计算和重新计算和重新计算和重新计算和重新计算和重新计算和重新计算,计算所有轮廓点和拟合Eclipse之间的偏移,从而计算所有轮廓点和拟合Eclipse之间的偏移,从而消除偏差更高的噪声点(通常为所有轮廓点的大约5%)消除直到偏差低于指定阈值。结果表明,该算法不仅可以消除每轮的固定噪声点,而且还可以在最大程度地保护有效点的数量。最后,通过两种方式验证了算法的可行性。一个是理想的数据验证。证明该算法可以保证朝向理想中心坐标值的收敛。另一个是实验验证。基于CCVLSC的对象位移与Y坐标价值获得相关达达的关系,建立了一个实验系统。通过比较来表示算法具有比其他典型算法更好的稳健性和更高的距离测量精度的预测和实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号