首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Research on Digital Camouflage Pattern Generation Algorithm Based on Adversarial Autoencoder Network
【24h】

Research on Digital Camouflage Pattern Generation Algorithm Based on Adversarial Autoencoder Network

机译:基于对抗AutoEncoder网络的数字迷彩模式生成算法研究

获取原文
获取原文并翻译 | 示例

摘要

In the past, most of the digital camouflage used textural features to extract the configuration features of spots in gray images, unable to effectively utilize the position relationship between color information. In order to overcome this shortcoming, a new digital camouflage pattern design model was proposed based on the model of adversarial autoencoder network. Firstly, the complexity and performance of several main color extraction algorithms were analyzed and compared, and combined with AFK-MC2 algorithm and color similarity coefficient, a fast camouflage main color clustering method was proposed. Then a deep convolution adversarial autoencoder network was designed to extract and describe the configuration features of the spots in background pattern. In order to diffuse pixel spot and achieve the effect of spatial color blending, a morphological processing algorithm was proposed to process the generated camouflage patterns. Finally, two sets of grassland and woodland datasets were established, respectively. The influence of the number of latent variables of network on the training process was tested on the dataset, and the number of camouflage feature descriptions was determined to be greater than or equal to 10. In order to verify the effectiveness of the generated camouflage, the spots in background region and target region were randomly selected, and the Euclidean distance between the feature parameters of these spots was calculated. Both the visual and experimental results demonstrate that the generated spots have high fusion with the background.
机译:在过去,大多数数字伪装使用纹理特征来提取灰色图像中斑点的配置特征,无法有效地利用颜色信息之间的位置关系。为了克服这种缺点,基于对抗性自动化器网络模型提出了一种新的数字迷彩模式设计模型。首先,分析和比较了几种主要颜色提取算法的复杂性和性能,并结合了AFK-MC2算法和色彩相似度系数,提出了一种快速伪装的主要颜色聚类方法。然后,深度卷积对手AutoEncoder网络旨在提取和描述背景图案中的斑点的配置特征。为了漫射像素点并达到空间颜色混合的效果,提出了一种形态学处理算法来处理产生的伪装图案。最后,分别建立了两套草原和林地数据集。在数据集上测试了在数据集上对训练过程进行潜在变量的影响,并确定伪装特征描述的数量大于或等于10。为了验证所生成的伪装的有效性,随机选择背景区域和目标区域中的斑点,并计算这些斑点的特征参数之间的欧几里德距离。视觉和实验结果均表明产生的斑点具有高融合的背景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号