首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >RGB-D Image Multi-Target Detection Method Based on 3D DSF R-CNN
【24h】

RGB-D Image Multi-Target Detection Method Based on 3D DSF R-CNN

机译:基于3D DSF R-CNN的RGB-D图像多目标检测方法

获取原文
获取原文并翻译 | 示例

摘要

At present, the application of deep learning algorithms in two-dimensional color image detection is being continuously innovated and broken. With the popularity of depth cameras, color image detection methods with depth information need to be upgraded. To solve this problem, a multi-target detection algorithm based on 3D DSF R-CNN (Double Stream Faster R-CNN, Convolution Neural Network based on Candidate Region) is proposed in this paper. The RGB information and the depth information of the image are given to two input elements of the convolution network with the same structure and weight sharing, and an optimal fusion weight algorithm is used to determine the weight of the fusion target in accordance with the recognition accuracy of the recognition targets under the single modal information, so as to ensure the most efficient fusion result. After several convolution operations, the independent features are extracted and the two networks are fused according to the optimal weights in the convolution layer. With the conducting of convolution and extract the fused features, and finally get the output through the full link layer. Compared with the previous two-dimensional convolution network algorithm, this algorithm improves the detection rate and success rate while ensuring the detection time. The experimental result shows that this method has strong robustness for complex illumination and partial occlusion, and has excellent detection results under non-restrictive conditions.
机译:目前,在二维彩色图像检测中的深度学习算法的应用正在不断创新和破碎。随着深度摄像机的普及,需要升级具有深度信息的彩色图像检测方法。为了解决该问题,本文提出了一种基于3D DSF R-CNN的多目标检测算法(基于候选区域的双流R-CNN,基于候选区域的卷积神经网络)。图像的RGB信息和深度信息被给予具有相同结构和权重共享的卷积网络的两个输入元件,并且使用最佳融合权重算法来根据识别精度来确定融合目标的权重识别目标在单一模态信息下,以确保最有效的融合结果。经过几个卷积操作,提取独立的特征,并且根据卷积层中的最佳权重熔断两个网络。随着卷积和提取融合功能的推进,最后通过完整的链路层获得输出。与先前的二维卷积网络算法相比,该算法提高了检测率和成功率,同时确保了检测时间。实验结果表明,该方法对复杂的照明和部分闭塞具有强的鲁棒性,并且在非限制性条件下具有优异的检测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号