首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Normalized Moment of Inertia-Based Detection Algorithm for Copy-Paste Image Tampering
【24h】

Normalized Moment of Inertia-Based Detection Algorithm for Copy-Paste Image Tampering

机译:基于惯性的综合贴糊图像篡改算法的标准化力矩

获取原文
获取原文并翻译 | 示例

摘要

Copy-paste tampering is one of the most common image content attacking methods. Considering the low accuracy and high feature dimension of the existing algorithms, a normalized moment of inertia method is proposed in this paper to overcome these defects. In the phase of feature extracting, the algorithm first transforms the tested image using wavelet, and then selects the similar subbands to build overlapped blocks, finally uses Perceived Hash Algorithm (PHA) to make binarization processing for the subblocks and carries out the normalize moment of inertia of the subblocks which satisfy the coarse matching conditions between adjacent two lines after performing dictionary sorting. In feature matching phase, the algorithm first counts the similar subblocks whose shift is above the distance threshold, and then obtains the main shift vectors with specific frequencies, finally performs feature matching according to the difference of the normalized moment of inertia in the neighborhood. Experiment results illustrate that the proposed algorithm with lower feature dimension can effciently improve the matching speed and accuracy. Furthermore, it has better robustness for some post-processing operations, such as compression, Gaussian Blur, adding Gaussian noise, etc.
机译:复制粘贴篡改是最常见的图像内容攻击方法之一。考虑到现有算法的低精度和高特征尺寸,本文提出了惯性方法的标准化力矩,以克服这些缺陷。在特征提取的阶段,算法首先使用小波转换测试的图像,然后选择类似的子带以构建重叠的块,最后使用感知散列算法(PHA)来为子块进行二值化处理,并执行正常化时刻在执行字典排序之后满足相邻两行之间的粗匹配条件的子块的惯性。在特征匹配阶段,算法首先对其移位高于距离阈值的类似子块进行计数,然后获得具有特定频率的主移位向量,最后根据邻域的惯量的常规力矩的差异执行特征匹配。实验结果表明,具有较低特征尺寸的所提出的算法可以效力地提高匹配速度和精度。此外,对于一些后处理操作具有更好的鲁棒性,例如压缩,高斯模糊,添加高斯噪声等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号