首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Lockable Abnormal Electromagnetic Signal Joint Detection Algorithm
【24h】

A Lockable Abnormal Electromagnetic Signal Joint Detection Algorithm

机译:一种可锁定的异常电磁信号联合检测算法

获取原文
获取原文并翻译 | 示例

摘要

With the development of computers and network technologies, network security has gradually become a global problem. Network security defenses need to be carried out not only on the Internet, but also on other communication media, such as electromagnetic signals. Existing electromagnetic signal communication is easily intercepted or infiltrated. In order to effectively detect the abnormal electromagnetic signal to find out the specific location, then classify it, it is necessary to study the way of communication. The existing electromagnetic signal detection accuracy is low and cannot be located. Considering the characteristics of different power sources in different locations, combined with spark streaming technology and machine learning classification technology, a joint platform for electromagnetic signal anomaly detection based on big data analysis is proposed. The electromagnetic signal is abnormally detected by feature comparison and small signal analysis, and the position and number between the signal sources are determined by three-point positioning and signal attenuation. The experimental results show that the method can detect abnormal electromagnetic signals and classify abnormal electromagnetic signals well, the accuracy rate can reach 95%, and the positioning accuracy can reach 89%.
机译:随着计算机和网络技术的发展,网络安全已逐渐成为全球性问题。网络安全防御不仅需要在Internet上进行,而且还需要在其他通信介质(如电磁信号)上进行。现有的电磁信号通信很容易被拦截或渗透。为了有效检测异常电磁信号,找出具体位置,然后进行分类,有必要研究通信方式。现有的电磁信号检测精度低,无法定位。针对不同地区不同电源的特点,结合火花流技术和机器学习分类技术,提出了一种基于大数据分析的电磁信号异常检测联合平台。通过特征比较和小信号分析来异常检测电磁信号,并通过三点定位和信号衰减来确定信号源之间的位置和数量。实验结果表明,该方法能够很好地检测出异常电磁信号,并对异常电磁信号进行分类,准确率可以达到95%,定位精度可以达到89%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号