首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Distributed Component Forests in 2-D: Hierarchical Image Representations Suitable for Tera-Scale Images
【24h】

Distributed Component Forests in 2-D: Hierarchical Image Representations Suitable for Tera-Scale Images

机译:二维中的分布式组件林:适用于Tera规模图像的分层图像表示

获取原文
获取原文并翻译 | 示例

摘要

The standard representations known as component trees, used in morphological connected attribute filtering and multi-scale analysis, are unsuitable for cases in which either the image itself or the tree do not fit in the memory of a single compute node. Recently, a new structure has been developed which consists of a collection of modified component trees, one for each image tile. It has to-date only been applied to fairly simple image filtering based on area. In this paper, we explore other applications of these distributed component forests, in particular to multi-scale analysis such as pattern spectra, and morphological attribute profiles and multi-scale leveling segmentations.
机译:形态连接属性过滤和多尺度分析中使用的称为组件树的标准表示形式不适用于图像本身或树不适合单个计算节点的内存的情况。最近,已经开发出一种新结构,该结构由一组修改后的组件树组成,每个图像块一个。迄今为止,它仅被应用于基于面积的相当简单的图像过滤。在本文中,我们探索了这些分布式组件林的其他应用,特别是在多尺度分析中,例如模式谱,形态学属性配置文件和多尺度平整分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号