首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Research on a Thangka Image Classification Method Based on Support Vector Machine
【24h】

Research on a Thangka Image Classification Method Based on Support Vector Machine

机译:基于支持向量机的唐卡图像分类方法研究

获取原文
获取原文并翻译 | 示例

摘要

As an art image, Thangka images have rich themes, various forms of expression, complex picture content and many layers of color representation. This paper mainly constructs a multicore support vector machine (SVM) based on the information entropy feature-weighted radial basis kernel function. In this paper, the kernel function is optimized, and the feature reduction is performed by using the random forest feature selection algorithm with average accuracy degradation. Finally, the effective classification of the icon image and the mandala image in Thangka is realized. The research results provide support for the follow-up study of Thangka image annotation and retrieval.
机译:作为艺术图像,唐卡图像具有丰富的主题,多种表现形式,复杂的图片内容和多层色彩表示。本文主要基于信息熵特征加权径向基核函数构造多核支持向量机(SVM)。本文对内核函数进行了优化,并采用平均精度下降的随机森林特征选择算法进行特征约简。最后,实现了唐卡中图标图像和曼陀罗图像的有效分类。研究结果为唐卡图像标注和检索的后续研究提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号