首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >FEATURE EXTRACTION IN CHARACTER RECOGNITION WITH ASSOCIATIVE MEMORY CLASSIFIER
【24h】

FEATURE EXTRACTION IN CHARACTER RECOGNITION WITH ASSOCIATIVE MEMORY CLASSIFIER

机译:联想记忆分类器在特征识别中的特征提取

获取原文
获取原文并翻译 | 示例

摘要

A pattern recognition system mainly contains two functional parts, i.e. feature extraction and pattern classification. The success of such a system depends on not only the effectiveness of each of them, but also their operation in concert. The feature extraction process in a traditional recognition system has two major tasks, namely, to extract deformation invariant signals and to reduce data. When a neural network is used as a pattern classifier, however, an alteration in these basic objectives is needed. In particular, the consideration of data reduction will be replaced by that of the suitability of feature vectors to the neural network. In this paper, feature extraction algorithms in character recognition have been designed based on these principles. The improvements made by these algorithms have been demonstrated in a series of experiments which justify such a change in the fundamental objectives of the feature extraction process when an associative memory classifier is used.
机译:模式识别系统主要包括两个功能部分,即特征提取和模式分类。这种系统的成功不仅取决于它们各自的有效性,还取决于它们的协调运行。传统识别系统中的特征提取过程有两个主要任务,即提取变形不变信号和减少数据。但是,当将神经网络用作模式分类器时,需要对这些基本目标进行更改。特别是,数据缩减的考虑将被特征向量对神经网络的适用性所取代。本文基于这些原理设计了字符识别中的特征提取算法。这些算法所做的改进已在一系列实验中得到证明,这些实验证明了在使用关联内存分类器时,特征提取过程的基本目标发生了这种变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号