首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >AN SVM-BASED INCREMENTAL LEARNING ALGORITHM FOR USER ADAPTATION OF SKETCH RECOGNITION
【24h】

AN SVM-BASED INCREMENTAL LEARNING ALGORITHM FOR USER ADAPTATION OF SKETCH RECOGNITION

机译:基于用户支持的草图识别的基于SVM的增量学习算法

获取原文
获取原文并翻译 | 示例

摘要

User adaptation is a critical problem in the design of human-computer interaction systems. Many pattern recognition problems, such as handwriting/sketching recognition and speech recognition, are user dependent, since different users' handwritings, drawing styles, and accents are different. Therefore, the classifiers for these problems should provide the functionality of user adaptation so as to let each particular user experience better recognition accuracy according to his input habit/style. However, the user adaptation functionality requires the classifiers to have the incremental learning ability, by which the classifiers can adapt to the user quickly without too much computation cost. In this paper, an SVM-based incremental learning algorithm is presented to solve this problem for sketch recognition. Our algorithm utilizes only the support vectors instead of all the historical samples, and selects some important samples from all newly added samples as training data. The importance of a sample is measured according to its distance to the hyper-plane of the SVM classifier. Theoretical analysis, experimentation, and evaluation of our algorithm in our online graphics recognition system SmartSketchpad, are presented to show the effectiveness of this algorithm. According to our experiments, this algorithm can reduce both the training time and the required storage space for the training dataset to a large extent with very little loss of precision.
机译:用户适应性是人机交互系统设计中的关键问题。由于不同的用户的笔迹,绘画风格和口音不同,因此许多模式识别问题(例如手写/素描识别和语音识别)取决于用户。因此,针对这些问题的分类器应提供用户适应的功能,以使每个特定用户根据其输入习惯/风格来获得更好的识别准确性。但是,用户适应功能要求分类器具有增量学习能力,通过这种学习能力,分类器可以快速适应用户而无需太多的计算成本。在本文中,提出了一种基于SVM的增量学习算法来解决草图识别的问题。我们的算法仅利用支持向量而不是所有历史样本,并从所有新添加的样本中选择一些重要样本作为训练数据。根据样本到SVM分类器超平面的距离来衡量样本的重要性。本文对在线图形识别系统SmartSketchpad中的算法进行了理论分析,实验和评估,以证明该算法的有效性。根据我们的实验,该算法可以在很大程度上减少训练时间和训练数据集所需的存储空间,而精度损失很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号