首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >UNIVERSAL WRITING MODEL FOR RECOVERY OF WRITING SEQUENCE OF STATIC HANDWRITING IMAGES
【24h】

UNIVERSAL WRITING MODEL FOR RECOVERY OF WRITING SEQUENCE OF STATIC HANDWRITING IMAGES

机译:静态手写图像写入顺序恢复的通用写入模型

获取原文
获取原文并翻译 | 示例

摘要

Online features have been proven to be more robust information for handwriting recognition than an offline static image due to dynamic aspects, such as the writing sequence of strokes. The estimation of temporal information from a static image becomes an important issue. This paper presents a new statistical method to reconstruct the writing order of a handwritten signature from a two-dimensional static image. The reconstruction process consists of two phases, namely the training phase and the testing phase. In the training phase, the writing order with other attributes, such as length and direction, are extracted and analyzed from a set of training online handwritten signatures. A Universal Writing Model (UWM), which consists of a set of distribution functions, is then constructed. In the testing phase, the UWM is applied to reconstruct the writing order of an offline signature. 300 offline signatures with ground truth are used for evaluation. Experimental results show that about one-eighth of the reconstructed writing sequences are the same as the actual writing sequences.
机译:由于动态方面(例如笔画的书写顺序),在线特性比离线静态图像被证明是用于手写识别的更可靠的信息。从静态图像估计时间信息成为重要的问题。本文提出了一种新的统计方法,用于从二维静态图像重建手写签名的书写顺序。重建过程包括两个阶段,即训练阶段和测试阶段。在训练阶段,从一组训练的在线手写签名中提取并分析具有其他属性(例如长度和方向)的书写顺序。然后构造一个通用写作模型(UWM),它由一组分布函数组成。在测试阶段,将UWM应用于重构脱机签名的写入顺序。使用300个具有基本事实的脱机签名进行评估。实验结果表明,大约有八分之一的重构写作序列与实际写作序列相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号