首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >FACE AND EYE DETECTION FROM HEAD AND SHOULDER IMAGE ON MOBILE DEVICES
【24h】

FACE AND EYE DETECTION FROM HEAD AND SHOULDER IMAGE ON MOBILE DEVICES

机译:移动设备上头部和肩膀图像的面部和眼睛检测

获取原文
获取原文并翻译 | 示例

摘要

With the advance of semiconductor technology, the current mobile devices support mul-timodal input and multimedia output. In turn, human computer communication applications can be developed in mobile devices such as mobile phone and PDA. This paper addresses the research issues of face and eye detection on mobile devices. The major obstacles that we need to overcome are the relatively low processor speed, low storage memory and low image (CMOS senor) quality. To solve these problems, this paper proposes a novel and efficient method for face and eye detection. The proposed method is based on color information because the computation time is small. However, the color information is sensitive to the illumination changes. In view of this limitation, this paper proposes an adaptive Illumination Insensitive (AI~2) Algorithm, which dynamically calculates the skin color region based on an image color distribution. Moreover, to solve the strong sunlight effect, which turns the skin color pixel into saturation, a dual-color-space model is also developed. Based on AI~2 algorithm and face boundary information, face region is located. The eye detection method is based on an average integral of density, projection techniques and Gabor filters. To quantitatively evaluate the performance of the face and eye detection, a new metric is proposed. 2158 head & shoulder images captured under uncontrolled indoor and outdoor lighting conditions are used for evaluation. The accuracy in face detection and eye detection are 98% and 97% respectively. Moreover, the average computation time of one image using Matlab code in Pentium Ⅲ 700 MHz computer is less than 15 seconds. The computational time will be reduced to tens hundreds of millisecond (ms) if low level programming language is used for implementation. The results are encouraging and show that the proposed method is suitable for mobile devices.
机译:随着半导体技术的进步,当前的移动设备支持多模式输入和多媒体输出。反过来,可以在诸如移动电话和PDA的移动设备中开发人机通信应用程序。本文解决了移动设备上的面部和眼睛检测的研究问题。我们需要克服的主要障碍是相对较低的处理器速度,较低的存储内存和较低的图像(CMOS传感器)质量。为了解决这些问题,本文提出了一种新颖且有效的面部和眼睛检测方法。所提出的方法基于颜色信息,因为计算时间短。然而,颜色信息对照明变化敏感。鉴于这种局限性,本文提出了一种自适应照明不敏感(AI〜2)算法,该算法根据图像颜色分布动态计算肤色区域。此外,为了解决强烈的日光效应,该效应使肤色像素变成饱和,还开发了双色空间模型。基于AI〜2算法和人脸边界信息,确定人脸区域。眼睛检测方法基于密度的平均积分,投影技术和Gabor滤波器。为了定量评估面部和眼睛检测的性能,提出了一种新的指标。在不受控的室内和室外照明条件下捕获的2158头和肩图像用于评估。面部检测和眼睛检测的准确度分别为98%和97%。而且,在奔腾Ⅲ700 MHz计算机上使用Matlab代码计算一幅图像的平均时间少于15秒。如果使用低级编程语言来实现,则计算时间将减少到几百毫秒(ms)。结果令人鼓舞,表明所提出的方法适用于移动设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号