【24h】

HANDWRITING-BASED PERSONAL IDENTIFICATION

机译:基于手势的个人识别

获取原文
获取原文并翻译 | 示例

摘要

Handwriting-based personal identification, which is also called handwriting-based writer identification, is an active research topic in pattern recognition. Despite continuous effort, offline handwriting-based writer identification still remains as a challenging problem because writing features can only be extracted from the handwriting image. As a result, plenty of dynamic writing information, which is very valuable for writer identification, is unavailable for offline writer identification. In this paper, we present a novel wavelet-based Generalized Gaussian Density (GGD) method for offline writer identification. Compared with the 2-D Gabor model, which is currently widely acknowledged as a good method for offline handwriting identification, GGD method not only achieves a better identification accuracy but also greatly reduces the elapsed time on calculation in our experiments.
机译:基于手写的个人识别(也称为基于手写的作者识别)是模式识别中的一个活跃的研究主题。尽管进行了持续的努力,但是基于脱机手写的作者识别仍然是一个具有挑战性的问题,因为只能从手写图像中提取书写特征。结果,大量的动态写作信息对于作家识别非常有价值,而对于离线作家识别则不可用。在本文中,我们提出了一种新颖的基于小波的广义高斯密度(GGD)方法用于离线作者识别。与二维Gabor模型相比,二维Gabor模型是目前公认的离线手写识别的一种很好的方法,GGD方法不仅可以实现更好的识别精度,而且可以大大减少实验中的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号