首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Hybrid And Incremental Fuzzy Learning For Human Skin Detection
【24h】

Hybrid And Incremental Fuzzy Learning For Human Skin Detection

机译:混合和增量模糊学习在人体皮肤检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised- and supervised-lcarning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
机译:本文提出了一种在数字图像中检测人体皮肤的框架。该框架由训练阶段和检测阶段组成。通过在混合和增量模糊学习方案中处理几个训练图像,可以在训练阶段学习皮肤模型。该方案将无监督和有监督的卡尔卡结合起来:通过模糊聚类,无监督,从训练图像中获得颜色组的聚类;并监督选择代表肤色的组。在训练阶段结束时,使用聚合运算符将选定组的组合提供到皮肤模型中。在检测阶段,学习到的皮肤模型用于有效检测人体皮肤。实验结果表明,该框架可对人体皮肤进行稳健而准确的检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号