首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >PARAMETERS OPTIMIZE METHOD BASED ON GENETIC AND SIMULATED ANNEALING ALGORITHMS
【24h】

PARAMETERS OPTIMIZE METHOD BASED ON GENETIC AND SIMULATED ANNEALING ALGORITHMS

机译:基于遗传和模拟退火算法的参数优化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper gives an initial study on the comparison between Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). Firstly, a new algorithm is presented. This method combines Genetic Algorithm and Simulated Annealing Algorithm, and it can be used to optimize the three parameters α, β and γ. It involes the rules that are extracted from Fuzzy Extension Matrix (FEM). These parameters play an important part in the entire process of rule extraction based on FEM. Secondly, it provides some theoretical support to the direct selection of the parameter values through experiments. Lastly, five data sets from the UCI Machine Learning centers are employed in the study. Experimental results and discussions are given.
机译:本文对遗传算法(GA)与模拟退火算法(SAA)的比较进行了初步研究。首先,提出了一种新的算法。该方法结合了遗传算法和模拟退火算法,可用于优化三个参数α,β和γ。它涉及从模糊扩展矩阵(FEM)中提取的规则。这些参数在基于FEM的规则提取的整个过程中起着重要的作用。其次,它为通过实验直接选择参数值提供了理论支持。最后,这项研究使用了来自UCI机器学习中心的五个数据集。实验结果和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号