首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >CONTEXT AWARE INFORMATION DELIVERY FOR MOBILE DEVICES
【24h】

CONTEXT AWARE INFORMATION DELIVERY FOR MOBILE DEVICES

机译:移动设备的上下文通知信息传递

获取原文
获取原文并翻译 | 示例

摘要

Delivering the right amount of information to the right person is vital on the tactical battlefield. With the increasing use of mobile devices by the military, delivering relevant information instantaneously to the warfighter becomes possible. However, large quantities of data are being generated constantly while the human processing power and communication channels are limited. Therefore, data must be processed so it can be evaluated against operational needs. This data is collected in multiple modalities include images, videos and field reports with multi-sensor data. Providing automated processing of unstructured information promises to effectively connect information processing with operational decision making, dramatically reducing the time needed to identify relevant information for mission planning and execution. We describe a multi-view learning technique that augments the feature set used by a classifier in one modality with entity relationships discovered in other modalities. To accommodate the limited computation power of field devices, mostly handhelds, the multi-view learning algorithm is low complexity. It applies to multiple modalities, leveraging many-to-many correspondences among different modalities. Experiments on image and text are presented in the paper which show more than 20% improvement over categorizing text or images independently. The categorized information is matched to the mission and task needs. Finally, relevant information needs to be transmitted via limited bandwidth negotiated from limited resources.
机译:向合适的人提供合适的信息量在战术战场上至关重要。随着军方对移动设备的越来越多的使用,可以将相关信息即时传递给作战人员。但是,在人力处理能力和通信渠道受到限制的同时,不断产生大量数据。因此,必须对数据进行处理,以便可以根据操作需要对其进行评估。该数据以多种方式收集,包括图像,视频和具有多传感器数据的现场报告。提供非结构化信息的自动化处理有望有效地将信息处理与运营决策联系起来,从而显着减少为任务计划和执行识别相关信息所需的时间。我们描述了一种多视图学习技术,该技术通过在其他模态中发现的实体关系来增强分类器在一种模态中使用的功能集。为了适应现场设备(主要是手持设备)的有限计算能力,多视图学习算法的复杂度较低。它适用于多种模式,并利用了不同模式之间的多对多对应关系。本文介绍了有关图像和文本的实验,与单独对文本或图像进行分类相比,该实验显示出超过20%的改进。分类的信息与任务和任务需求相匹配。最后,需要通过从有限资源协商来的有限带宽来传输相关信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号